How your brain can predict the future

New research suggests brains anticipate future events through a process called anticipatory timing.

How your brain can predict the future
  • Two systems work together to predict the future based on past actions or events stored in the brain.
  • Researchers worked with people with Parkinson's disease or cerebellar degeneration to test their hypothesis.
  • Researchers compared how people with these conditions used temporal clues respond to specific tests.

The brain uses many complex mechanisms for both timing and predicational actions. Scientists have found that we anticipate times and events within two distinct parts of the brain. Whether you're interacting with a familiar stimulus like the push of the gas pedal before the light turns green or preemptively bobbing your head to a popular song, your brain is interacting with both the past and an inferred future to make a decision or thought.

New research out of UC Berkeley supports the notion that these different ways of keeping time are split within the brain. Assaf Breska, lead researcher and postdoctoral researcher from UC Berkeley, says:

"Whether it's sports, music, speech or even allocating attention, our study suggests that timing is not a unified process, but that there are two distinct ways in which we make temporal predictions and these depend on different parts of the brain."

The study was published in the Proceedings of the National Academy of Science journal.

These two systems together help us to both live in the present and anticipate what's to come.

How your brain predicts future events through anticipatory timing

Researchers studied how anticipatory timing differed between people with Parkinson's disease and cerebellar degeneration

Two types of timing were of concern to them: rhythmic timing, which is related to the basal ganglia, and interval timing, which is related to the cerebellum. These are both important for prime brain areas that are responsible for movement and cognition.

In order to test the different degrees of anticipatory timing, the researchers used temporal clues to gauge participants' attention levels.

"To address these issues, we tested individuals with cerebellar degeneration or Parkinson's disease, with the latter serving as a model of basal ganglia dysfunction, on temporal prediction tasks in the subsecond range."

Each group viewed a sequence of red, white and green squares as they sped along on a screen. They were told to push a button when they saw a green square. The white square served as an alert that the green square would pop up next.

The next sequence of color changing squares consisted of the same colored squares flicking to a steady rhythm. It was found that cerebellar degeneration patients responded well to these cues.

Another sequence followed a more complex pattern with a more randomized interval of red and green squares. This was found to be easier for those with Parkinson's disease.

"We show that patients with cerebellar degeneration are impaired in using non-rhythmic temporal cues while patients with basal ganglia degeneration associated with Parkinson's disease are impaired in using rhythmic cues," says researcher Richard B. Ivry.

Two systems in the brain responsible for predicting the future

Neuroscientists now believe that these results confirm the brain does utilize two separate mechanisms for anticipatory timing, those being both placed in the basal ganglia and the cerebellum.

Breska says:

"Our results suggest at least two different ways in which the brain has evolved to anticipate the future… A rhythm-based system is sensitive to periodic events in the world such as is inherent in speech and music… And an interval system provides a more general anticipatory ability, sensitive to temporal regularities even in the absence of a rhythmic signal."

Their results challenge current theories that state the brain uses a single system to handle all timing actions.

The researchers think that they'll be able to develop specialized methods for helping people with damage to one of their timing systems. Some of these things could include games designed to train the faulty and affected part.

Is time an actual phenomenon or just a feeling?

There are 5 eras in the universe's lifecycle. Right now, we're in the second era.

Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.

Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft

Image source: Pablo Carlos Budassi
Surprising Science
  • We're in the middle, or thereabouts, of the universe's Stelliferous era.
  • If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
  • Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.
Keep reading Show less

Dark energy: The apocalyptic wild card of the universe

Dr. Katie Mack explains what dark energy is and two ways it could one day destroy the universe.

Videos
  • The universe is expanding faster and faster. Whether this acceleration will end in a Big Rip or will reverse and contract into a Big Crunch is not yet understood, and neither is the invisible force causing that expansion: dark energy.
  • Physicist Dr. Katie Mack explains the difference between dark matter, dark energy, and phantom dark energy, and shares what scientists think the mysterious force is, its effect on space, and how, billions of years from now, it could cause peak cosmic destruction.
  • The Big Rip seems more probable than a Big Crunch at this point in time, but scientists still have much to learn before they can determine the ultimate fate of the universe. "If we figure out what [dark energy is] doing, if we figure out what it's made of, how it's going to change in the future, then we will have a much better idea for how the universe will end," says Mack.
Keep reading Show less

Astrophysicists find unique "hot Jupiter" planet without clouds

A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.

Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.

Credit: M. Weiss/Center for Astrophysics | Harvard & Smithsonian
Surprising Science
  • Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
  • Such planets were formed differently from others and offer unique research opportunities.
  • Only one other such exoplanet was found previously.
Keep reading Show less
Scroll down to load more…
Quantcast