4 Things That Currently Break the Speed of Light Barrier

One frequent question I get is whether we can break the light barrier—because unless we can break the light barrier, the distant stars will always be unreachable.

4 Things That Currently Break the Speed of Light Barrier

One frequent question I get is whether we can break the light barrier—because unless we can break the light barrier, the distant stars will always be unreachable.


Most textbooks say that nothing can go faster than light, but that statement actually should be qualified: The answer is yes, you can break the light barrier, but not in the way we see in the movies. There are, in fact, several ways to travel faster than light:

1. The Big Bang itself expanded much faster than the speed of light. But this only means that "nothing can go faster than light." Since nothing is just empty space or vacuum, it can expand faster than light speed since no material object is breaking the light barrier. Therefore, empty space can certainly expand faster than light.

2. If you wave a flashlight across the night sky, then, in principle, its image can travel faster than light speed (since the beam of light is going from one part of the Universe to another part on the opposite side, which is, in principle, many light years away). The problem here is that no material object is actually moving faster than light. (Imagine that you are surrounded by a giant sphere one light year across. The image from the light beam will eventually hit the sphere one year later. This image that hits the sphere then races across the entire sphere within a matter of seconds, although the sphere is one light year across.) Just the image of the beam as it races across the night sky is moving faster than light, but there is no message, no net information, no material object  that actually moves along this image.

3. Quantum entanglement moves faster than light. If I have two electrons close together, they can vibrate in unison, according to the quantum theory. If I then separate them, an invisible umbilical cord emerges which connects the two electrons, even though they may be separated by many light years. If I jiggle one electron, the other electron "senses" this vibration instantly, faster than the speed of light. Einstein thought that this therefore disproved the quantum theory, since nothing can go faster than light.

But actually this experiment (the EPR experiment) has been done many times, and each time Einstein was wrong. Information does go faster than light, but Einstein has the last laugh. This is because the information that breaks the light barrier is random, and hence useless. (For example, let's say a friend always wears one red sock and one green sock. You don't know which leg wears which sock. If you suddenly see that one foot has a red sock, then you know instantly, faster than the speed of light, that the other sock is green. But this information is useless. You cannot send Morse code or usable information via red and green socks.)

4. Negative matter. The most credible way of sending signals faster than light is via negative matter. You can do this either by:

a) compressing the space in front of your and expanding the space behind you, so that you surf on a tidal wave of warped space. You can calculate that this tidal wave travels faster than light if driven by negative matter (an exotic form of matter which has never been seen.)

b) using a wormhole, which is a portal or shortcut through space-time, like the Looking Glass of Alice.

In summary, the only viable way of breaking the light barrier may be through General Relativity and the warping of space time. However, it is not known if negative matter exists, and whether the wormhole will be stable. To solve the question of stability, you need a fully quantum theory of gravity, and the only such theory which can unite gravity with the quantum theory is string theory (which is what I do for a living). Sadly, the theory is so complex that no has been able to fully solve it and give a definitive anwer to all these questions. Maybe someone reading this blog will be inspired to sovle string theory and answer the question whether we can truly break the light barrier.

--

Weird science shows unseemly way beetles escape after being eaten

Certain water beetles can escape from frogs after being consumed.

R. attenuata escaping from a black-spotted pond frog.

Surprising Science
  • A Japanese scientist shows that some beetles can wiggle out of frog's butts after being eaten whole.
  • The research suggests the beetle can get out in as little as 7 minutes.
  • Most of the beetles swallowed in the experiment survived with no complications after being excreted.
Keep reading Show less

Stressed-out mothers are twice as likely to give birth to a girl

New research from the University of Granada found that stress could help determine sex.

Photo: Romolo Tavani / Adobe Stock
Surprising Science
  • A new study found that women with elevated stress before, during, and after conception are twice as likely to deliver a girl.
  • One factor could be that sperm carrying an X chromosome are better equipped to reach the egg under adverse conditions.
  • Another factor could be miscarriage of male fetuses during times of stress.
  • Keep reading Show less

    The cost of world peace? It's much less than the price of war

    The world's 10 most affected countries are spending up to 59% of their GDP on the effects of violence.

    Mario Tama/Getty Images
    Politics & Current Affairs
    • Conflict and violence cost the world more than $14 trillion a year.
    • That's the equivalent of $5 a day for every person on the planet.
    • Research shows that peace brings prosperity, lower inflation and more jobs.
    • Just a 2% reduction in conflict would free up as much money as the global aid budget.
    • Report urges governments to improve peacefulness, especially amid COVID-19.
    Keep reading Show less
    Surprising Science

    The evolution of modern rainforests began with the dinosaur-killing asteroid

    The lush biodiversity of South America's rainforests is rooted in one of the most cataclysmic events that ever struck Earth.

    Quantcast