Is Time Travel Possible? -- Part II

As we mentioned in a previous post, Einstein himself was worried about the possibility that time travel was built into his General Theory of Relativity. In 1949, when his good friend Kurt Gödel showed that a rotating universe allowed for time travel, he was deeply worried.


Gödel, in fact, would pester astronomers visiting Princeton and ask if there was any sign that the universe was rotating. In Einstein's writings, he finally concluded that time travel might be inherent in his equations, but they can be dismissed "on physical grounds," i.e., they could not form using known physical mechanisms. In other words, the universe expanded, not rotated. So if the universe did rotate, then time travel might be an everyday occurrence. This argument holds even today. There are a large class of solutions of Einstein's equations, but many can be dismissed "on physical grounds." For example, in 1937, W.J. Van Stockum showed that a spinning cylinder that was infinitely long could satisfy all of Einstein's equations. Decades later, it was shown that the Stockum solution actually allowed for time travel. If you danced around this cosmic Maypole fast enough, you could come back before you left. But again, "on physical grounds," one can argue that cylinders can never be infinitely long, so this was just a mathematical curiosity.

Another solution allowing for time travel was found by Einstein himself, back in 1935, when he (and Nathan Rosen) introduced the wormhole. If you take the black hole solution (which looks like a funnel), cut off the end, and then join it, back-to-back, with another truncated funnel, then you have a wormhole. So at the heart of a black hole might lie a gateway to a parallel universe. In principle, you can then create wormholes connecting you to the distant past and hence create a time machine. However, "on physical grounds," you may dismiss this solution because anyone falling into a black hole would die in the process. So this was a mathematical solution, rather than a physical one.

But then, in 1963, things began to change. Mathematician Roy Kerr found perhaps one of the most beautiful exact solutions to Einstein's equations: a rotating black hole. Instead of collapsing into a dot (a singularity), the black hole was spinning rapidly, so it would shrink into a rotating ring. It did not collapse into a dot because of centrifugal force. The Kerr ring was like the Looking Glass of Alice. If you fell through the ring, you would not die at all, but fall through the wormhole into a parallel universe. If the parallel universe was your own past, then this could be used as a time machine.

Kerr himself was intrigued by what might happen if you fell into his black hole. If you fell multiple times through the ring by making circles around it, then you would pass through various parallel universes. Think of taking many parallel sheets of paper, then taking a pencil and punching a hole through all of them. Each sheet is a parallel universe, but the hole connects all of them. Passing multiple times through the Kerr ring was like pushing the "up" button on an elevator, and passing through multiple parallel universes.

One problem (among many) with the Kerr rotating black hole is that a journey through it is a one-way street. The black hole is surrounded by two (not just one) "event horizons," which are points of no return. So you would have to travel faster than the speed of light (which is not possible here) to come back to your original universe.

However, in the 1980s Kip Thorne and his colleagues at Cal Tech then found yet another solution of Einstein's equations, which allowed back-and-forth travel through a wormhole. These are called "transversable wormholes" and can be used to transport you to a different time or different point in space. You have to introduce, however, negative matter or negative energy to power this transversable wormhole.

But all of this has not yet answered the fundamental question raised by Einstein himself: are these solutions allowed "on physical grounds?" Mathematically, all of these solutions seem to work. But perhaps they are unstable, or too radioactive, to allow for genuine time travel. To answer these physical questions, we now have to go the next theory, the quantum theory, and a theory which combines relativity with the quantum theory, string theory, which is what I do for a living.

We will address this crucial but sticky question next.

LinkedIn meets Tinder in this mindful networking app

Swipe right to make the connections that could change your career.

Getty Images
Sponsored
Swipe right. Match. Meet over coffee or set up a call.

No, we aren't talking about Tinder. Introducing Shapr, a free app that helps people with synergistic professional goals and skill sets easily meet and collaborate.

Keep reading Show less

26 ultra-rich people own as much as the world's 3.8 billion poorest

The Oxfam report prompted Anand Giridharadas to tweet: "Don't be Pinkered into everything's-getting-better complacency."

Getty Images and Wikimedia Commons
Politics & Current Affairs
  • A new report by Oxfam argues that wealth inequality is causing poverty and misery around the world.
  • In the last year, the world's billionaires saw their wealth increase by 12%, while the poorest 3.8 billion people on the planet lost 11% of their wealth.
  • The report prompted Anand Giridharadas to tweet: "Don't be Pinkered into everything's-getting-better complacency." We explain what Steven Pinker's got to do with it.
Keep reading Show less

People who constantly complain are harmful to your health

Moans, groans, and gripes release stress hormones in the brain.

Photo credit: Getty Images / Stringer
popular

Could you give up complaining for a whole month? That's the crux of this interesting piece by Jessica Hullinger over at Fast Company. Hullinger explores the reasons why humans are so predisposed to griping and why, despite these predispositions, we should all try to complain less. As for no complaining for a month, that was the goal for people enrolled in the Complaint Restraint project.

Participants sought to go the entirety of February without so much as a moan, groan, or bellyache.

Keep reading Show less
Videos
  • Facebook and Google began as companies with supposedly noble purposes.
  • Creating a more connected world and indexing the world's information: what could be better than that?
  • But pressure to return value to shareholders came at the expense of their own users.
Keep reading Show less