Researchers discover intact brain cells of man killed by Mt Vesuvius eruption

The young man died nearly 2,000 years ago in the volcanic eruption that buried Pompeii.

Researchers discover intact brain cells of man killed by Mt Vesuvius eruption

The body's features are outlined with the sketch drawn at the time of the discovery (1961). The posterior part of the skull (the occipital bone and part of the parietals) had completely exploded, leaving the inner part visible. A. Vitrified brain fragment collected from the inner part of the skull; B. Vitrified spinal cord fragment from the spine (SEM, scale bars in mm).

Credit: PLOS ONE
  • A team of researchers in Italy discovered the intact brain cells of a young man who died in the Mount Vesuvius eruption in A.D. 79.
  • The brain's cell structure was visible to researchers (who used an electron microscope) in a glassy, black material found inside the man's skull.
  • The material was likely the victim's brain preserved through the process of vitrification in which the intense heat followed by rapid cooling turned the organ to glass.

Almost 2,000 years ago, Mount Vesuvius — located on the gulf of what is today Naples in Campania, Italy — erupted, burying the ancient cities of Herculaneum and Pompeii beneath hot ash.

Recently, a team of researchers in Italy discovered the intact brain cells of a young man who died in the disaster in A.D. 79. The team studied remains that were first unearthed in the 1960s from Herculaneum, a city once nestled into the shadow of Mount Vesuvius. The man was around 25 years old when he perished and was discovered lying face-down on a wooden bed in Herculaneum's Collegium Augustalium (the College of the Augustales), located near the city's main street. The building was the headquarters of the cult of Emperor Augustus who was worshipped as a deity, a common Roman tradition at the time.

Discovery of cells

Electron microscope image of brain axons.

Credit: PLOS ONE

Now, subsequent research has described how the researchers, using an electron microscope, discovered cells in the vitrified brain. According to Petrone they were "incredibly well preserved with a resolution that is impossible to find anywhere else." Additionally, the team used another method called energy-dispersive X-ray spectroscopy to determine the chemical compounds of the glassy material. The sample was rich in carbon and oxygen, which indicates that it was organic. The researchers compared those ancient proteins to a database of proteins found in the human brain, and found that all of the discovered proteins are indeed present in human brain tissue.

Additionally, Petrone and his team suspect they also discovered vitrified nerve cells in the ancient victim's spinal cord and cerebellum based on the position of the sample in the mind of the skull and the concentration of the proteins.

Future research

These impeccable preservations of brain tissue are unprecedented and will undoubtedly open the door to new and exciting research opportunities on these ancient people and civilizations that weren't possible until now.

The Italian research team will continue to study the remains to learn more about the vitrification process, including the precise temperatures the victims were exposed to and the cooling rate of the ash. They also, according to Petrone, want to analyze proteins from the remains and their related genes.

No, the Yellowstone supervolcano is not ‘overdue’

Why mega-eruptions like the ones that covered North America in ash are the least of your worries.

Ash deposits of some of North America's largest volcanic eruptions.

Image: USGS - public domain
Strange Maps
  • The supervolcano under Yellowstone produced three massive eruptions over the past few million years.
  • Each eruption covered much of what is now the western United States in an ash layer several feet deep.
  • The last eruption was 640,000 years ago, but that doesn't mean the next eruption is overdue.
Keep reading Show less

What the rise of digital nomads can tell us about the next wave of remote working

The pandemic has many people questioning whether they ever want to go back to the office.

SEBASTIEN SALOM-GOMIS/AFP via Getty Images
Personal Growth

If one thing is clear about remote work, it's this: Many people prefer it and don't want their bosses to take it away.

Keep reading Show less

CRISPR: Can we control it?

The potential of CRISPR technology is incredible, but the threats are too serious to ignore.

Videos
  • CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a revolutionary technology that gives scientists the ability to alter DNA. On the one hand, this tool could mean the elimination of certain diseases. On the other, there are concerns (both ethical and practical) about its misuse and the yet-unknown consequences of such experimentation.
  • "The technique could be misused in horrible ways," says counter-terrorism expert Richard A. Clarke. Clarke lists biological weapons as one of the potential threats, "Threats for which we don't have any known antidote." CRISPR co-inventor, biochemist Jennifer Doudna, echos the concern, recounting a nightmare involving the technology, eugenics, and a meeting with Adolf Hitler.
  • Should this kind of tool even exist? Do the positives outweigh the potential dangers? How could something like this ever be regulated, and should it be? These questions and more are considered by Doudna, Clarke, evolutionary biologist Richard Dawkins, psychologist Steven Pinker, and physician Siddhartha Mukherjee.

Technology & Innovation

Smartly dressed: Researchers develop clothes that sense movement via touch

Measuring a person's movements and poses, smart clothes could be used for athletic training, rehabilitation, or health-monitoring.

Quantcast