NASA Updates Star Calendar, Upsets Astrologers with New Zodiac Sign

NASA's updated celestial observations have forced astrology enthusiasts to revise the 3,000 year-old zodiac calendar – but let it be known that NASA does not care.

A constellation is a largely vacuous concept. NASA defines it as “a group of stars that forms a particular shape in the sky and has been given a name.” In other words, a group of stars is a constellation merely because some people say it is. The members of the constellation need not share anything else in common.


Recently, NASA has unwittingly come under criticism yet again by aficionados of astrology for ostensibly claiming that the zodiac calendar needs to be revised according to how the corresponding constellations are arranged. Under these revisions, people upset with NASA bemoan that the administration has restructured the zodiac calendar so that different signs correspond to different parts of the year by incorporating a 13th constellation with a 13th sign. For example of the outrage, a writer at Yahoo! wrote this in September:

We don’t want to be dramatic, but NASA just ruined our lives. For the first time in 3,000 years, they’ve decided to update the astrological signs. This means that the majority of us are about to experience a total identity crisis. Apparently, these changes are due to the fact that the constellations are not in the same position in the sky that they once were, and the star signs are about a month off now, as a result.

The writer may not want to be dramatic, but that may be difficult to avoid when fretting over “a total identity crisis” whose factual foundation is demonstrably flimsy.

Moreover, such aspersions about how the traditional zodiac calendar is being altered may be reasonably frustrating to NASA workers, who never were making claims about astrology to begin with. Rather, they were doing what astronomers do: observing the stars and analyzing describing what they saw.

Indeed, the article from NASA in question (which was aimed primarily at children) gives an account of how humans have observed the stars across history.

The Babylonians lived over 3,000 years ago. They divided the zodiac into 12 equal parts--like cutting a pizza into 12 equal slices. They picked 12 constellations in the zodiac, one for each of the 12 "slices." So, as Earth orbits the Sun, the Sun would appear to pass through each of the 12 parts of the zodiac. Since the Babylonians already had a 12-month calendar (based on the phases of the Moon), each month got a slice of the zodiac all to itself.

But even according to the Babylonians' own ancient stories, there were 13 constellations in the zodiac. (Other cultures and traditions have recognized as many as 24 constellations in the zodiac.) So the Babylonians picked one, Ophiuchus, to leave out. Even then, some of the chosen 12 didn't fit neatly into their assigned slice of the pie and slopped over into the next one.

People in Babylon saw stars, grouped them together according to imagined patterns, and forced a one-to-one correspondence to the 12 months of the year to generate the zodiac calendar by leaving out the constellation Ophiuchus (pronounced 'oh-fee-yoo-ki'), photographed below by the Rosetta spacecraft from 3 million miles away.

Merely pointing out and acknowledging the existence of an additional constellation observed by ancient stargazers is not the same as making an astrological argument. Rather, NASA was acknowledging a group of stars visible both to the Babylonians and astronomers now, maybe with an added touch of a little historical narrative.

Indeed, the movement of the constellations – including the new zodiac sign, Ophiuchus – is essential to the conception of the zodiac calendar, yet NASA describes that the movement is merely perceived based on the movement of the Earth (and the enormous distances across light from the stars must travel), as visualized below.

Ultimately, NASA is in the enterprise of science and not in the astrology business, so complaints against it about changes to the zodiac calendar could not be more misdirected. As NASA posted on Tumblr:

Did you recently hear that NASA changed the zodiac signs? Nope, we definitely didn’t… Here at NASA, we study astronomy, not astrology. We didn’t change any zodiac signs, we just did the math.

NASA records and analyzes data, and shouldn't be held accountable for ruining a pastime, even if it has spanned millennia. Zodiac enthusiasts who aren't resistant to change may well choose to apply NASA’s observations to how they configure and interpret the narratives they ascribe to the stars. 

If you're curious, you can find out if your star sign has shifted over at Inverse

'Upstreamism': Your zip code affects your health as much as genetics

Upstreamism advocate Rishi Manchanda calls us to understand health not as a "personal responsibility" but a "common good."

Sponsored by Northwell Health
  • Upstreamism tasks health care professionals to combat unhealthy social and cultural influences that exist outside — or upstream — of medical facilities.
  • Patients from low-income neighborhoods are most at risk of negative health impacts.
  • Thankfully, health care professionals are not alone. Upstreamism is increasingly part of our cultural consciousness.
Keep reading Show less
Videos
  • A huge segment of America's population — the Baby Boom generation — is aging and will live longer than any American generation in history.
  • The story we read about in the news? Their drain on social services like Social Security and Medicare.
  • But increased longevity is a cause for celebration, says Ashton Applewhite, not doom and gloom.


Dubai to build the world’s largest concentrated solar power plant

Can you make solar power work when the sun goes down? You can, and Dubai is about to run a city that way.

Photo credit: MARWAN NAAMANI / AFP / Getty Images
Technology & Innovation
  • A new concentrated solar plant is under construction in Dubai.
  • When it opens next year, it will be the largest plant of its kind on Earth.
  • Concentrated solar power solves the problem of how to store electricity in ways that solar pannels cannot.
Keep reading Show less

Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. Think a dialysis machine for the mind. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.