Nicholas Kristof: Want to Make a Difference? Tell a Compelling Story.

Pulitzer Prize winning author Nicholas Kristof describes research on what provokes charitable giving.

Nicholas Kristof: I have a new book out, A Path Appears, which is essentially about how to make a difference. And it addresses all those people who have this yearning to have an impact on the world, to find a measure of fulfillment but don’t really know how to go about that. And in working on the book my wife and partner in this effort, Sheryl WuDunn, one of the things we looked at is the kind of connections that link us to a cause and make us want to give, that make us want to participate in something. You know this arose for me, this research arose when I was writing for my column for The New York Times about Darfur back in 2004. And I was going to villages that had been burned out, talking to people who were survivors of massacres and it was frustrating me that I couldn’t get people to pay more attention to this. Meanwhile at that very same time here in New York City there was a red tailed hawk called Pale Male that had been kicked out of its nest in Central Park and New York was all up in arms about this homeless hawk. And I thought how is it that I can’t generate as much passion about hundreds of thousands of people being slaughtered as people feel for this hawk.

And that led me to this area of research, particularly by a guy called Paul Slovic. And it turns out that our engagement with a cause – it’s not about numbers, it’s not about classes of victims. It’s really about two things. First if all its emotional and it’s with individuals that we have evolved, we are hardwired to feel a certain amount of empathy and connection but with one other person whom we see and we can relate to. Not with 100,000 people half a world away. And the other thing is that we want to feel like we’re having an impact so we want some kind of a positive arc. We want to see a different being made. And so when aid organizations talk about five million people at risk and make it sound terribly depressing, they’re precisely hitting the buttons that turn people off. One of the things that really struck me was there have been experiments that ask people to do some math equations, solve some math problems first. And it turns out that if you do that, if you exercise the more rational parts of your brain then you’re less empathetic, you’re less likely to contribute. Those of us who care about these issues – we need to figure out how to do a better job of storytelling about individuals and showing that there is a possibility of hope.

Some of the research about our preference for helping individuals over classes of people comes from experiments where people were asked to contribute in some cases to this child, the one that was used was Rokia, a girl from West Africa versus a large group of people, millions of people suffering malnutrition in Africa. And of course everybody wanted to contribute to Rokia, to that girl. They wanted to help that girl. They didn’t really care about millions of people being malnourished. But what was striking is that, you know, even though we, I think, intellectually know that, you know, one death is tragedy and a million deaths is a statistic. That the point at which we begin to be numbed is when that number when N equals two. The moment you added not just Rokia but had a boy next to her and said you can help these two hungry kids, then people were less likely to contribute than if it was just Rokia. Likewise people are less willing to contribute to a fund to save kids from cancer if the same amount of money is going to save not one life but eight lives. Really it’s this bias to help an individual. So we have to figure out, I mean obviously the needs are vast and so we have to figure out how to open these lines of communication to move people at an emotional level to help an individual. But then use that empathy then to broaden and to serve so many other people who need help.

Directed / Produced by Jonathan Fowler, Elizabeth Rodd, and Dillon Fitton

Pulitzer Prize winning author Nicholas Kristof describes research on what provokes charitable giving. Counter-intuitively, the plight of a single individual is more effective for fundraising than that of a group. Kristof is the co-author of A Path Appears: Transforming Lives, Creating Opportunity.

Volcanoes to power bitcoin mining in El Salvador

The first nation to make bitcoin legal tender will use geothermal energy to mine it.

Credit: Aaron Thomas via Unsplash
Technology & Innovation

This article was originally published on our sister site, Freethink.

In June 2021, El Salvador became the first nation in the world to make bitcoin legal tender. Soon after, President Nayib Bukele instructed a state-owned power company to provide bitcoin mining facilities with cheap, clean energy — harnessed from the country's volcanoes.

The challenge: Bitcoin is a cryptocurrency, a digital form of money and a payment system. Crypto has several advantages over physical dollars and cents — it's incredibly difficult to counterfeit, and transactions are more secure — but it also has a major downside.

Crypto transactions are recorded and new coins are added into circulation through a process called mining.

Crypto mining involves computers solving incredibly difficult mathematical puzzles. It is also incredibly energy-intensive — Cambridge University researchers estimate that bitcoin mining alone consumes more electricity every year than Argentina.

Most of that electricity is generated by carbon-emitting fossil fuels. As it stands, bitcoin mining produces an estimated 36.95 megatons of CO2 annually.

A world first: On June 9, El Salvador became the first nation to make bitcoin legal tender, meaning businesses have to accept it as payment and citizens can use it to pay taxes.

Less than a day later, Bukele tweeted that he'd instructed a state-owned geothermal electric company to put together a plan to provide bitcoin mining facilities with "very cheap, 100% clean, 100% renewable, 0 emissions energy."

Geothermal electricity is produced by capturing heat from the Earth itself. In El Salvador, that heat comes from volcanoes, and an estimated two-thirds of their energy potential is currently untapped.

Why it matters: El Salvador's decision to make bitcoin legal tender could be a win for both the crypto and the nation itself.

"(W)hat it does for bitcoin is further legitimizes its status as a potential reserve asset for sovereign and super sovereign entities," Greg King, CEO of crypto asset management firm Osprey Funds, told CBS News of the legislation.

Meanwhile, El Salvador is one of the poorest nations in North America, and bitcoin miners — the people who own and operate the computers doing the mining — receive bitcoins as a reward for their efforts.

"This is going to evolve fast!"
NAYIB BUKELE

If El Salvador begins operating bitcoin mining facilities powered by clean, cheap geothermal energy, it could become a global hub for mining — and receive a much-needed economic boost in the process.

The next steps: It remains to be seen whether Salvadorans will fully embrace bitcoin — which is notoriously volatile — or continue business-as-usual with the nation's other legal tender, the U.S. dollar.

Only time will tell if Bukele's plan for volcano-powered bitcoin mining facilities comes to fruition, too — but based on the speed of things so far, we won't have to wait long to find out.

Less than three hours after tweeting about the idea, Bukele followed up with another tweet claiming that the nation's geothermal energy company had already dug a new well and was designing a "mining hub" around it.

"This is going to evolve fast!" the president promised.

How Pfizer and BioNTech made history with their vaccine

How were mRNA vaccines developed? Pfizer's Dr Bill Gruber explains the science behind this record-breaking achievement and how it was developed without compromising safety.

Sponsored by Pfizer
  • Wondering how Pfizer and partner BioNTech developed a COVID-19 vaccine in record time without compromising safety? Dr Bill Gruber, SVP of Pfizer Vaccine Clinical Research and Development, explains the process from start to finish.
  • "I told my team, at first we were inspired by hope and now we're inspired by reality," Dr Gruber said. "If you bring critical science together, talented team members together, government, academia, industry, public health officials—you can achieve what was previously the unachievable."
  • The Pfizer-BioNTech COVID-19 Vaccine has not been approved or licensed by the Food and Drug Administration (FDA), but has been authorized for emergency use by FDA under an Emergency Use Authorization (EUA) to prevent COVID-19 for use in individuals 12 years of age and older. The emergency use of this product is only authorized for the duration of the emergency declaration unless ended sooner. See Fact Sheet: cvdvaccine-us.com/recipients.

Keep reading Show less

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

Astronomers find more than 100,000 "stellar nurseries"

Every star we can see, including our sun, was born in one of these violent clouds.

Credit: NASA / ESA via Getty Images
Surprising Science

This article was originally published on our sister site, Freethink.

An international team of astronomers has conducted the biggest survey of stellar nurseries to date, charting more than 100,000 star-birthing regions across our corner of the universe.

Stellar nurseries: Outer space is filled with clouds of dust and gas called nebulae. In some of these nebulae, gravity will pull the dust and gas into clumps that eventually get so big, they collapse on themselves — and a star is born.

These star-birthing nebulae are known as stellar nurseries.

The challenge: Stars are a key part of the universe — they lead to the formation of planets and produce the elements needed to create life as we know it. A better understanding of stars, then, means a better understanding of the universe — but there's still a lot we don't know about star formation.

This is partly because it's hard to see what's going on in stellar nurseries — the clouds of dust obscure optical telescopes' view — and also because there are just so many of them that it's hard to know what the average nursery is like.

The survey: The astronomers conducted their survey of stellar nurseries using the massive ALMA telescope array in Chile. Because ALMA is a radio telescope, it captures the radio waves emanating from celestial objects, rather than the light.

"The new thing ... is that we can use ALMA to take pictures of many galaxies, and these pictures are as sharp and detailed as those taken by optical telescopes," Jiayi Sun, an Ohio State University (OSU) researcher, said in a press release.

"This just hasn't been possible before."

Over the course of the five-year survey, the group was able to chart more than 100,000 stellar nurseries across more than 90 nearby galaxies, expanding the amount of available data on the celestial objects tenfold, according to OSU researcher Adam Leroy.

New insights: The survey is already yielding new insights into stellar nurseries, including the fact that they appear to be more diverse than previously thought.

"For a long time, conventional wisdom among astronomers was that all stellar nurseries looked more or less the same," Sun said. "But with this survey we can see that this is really not the case."

"While there are some similarities, the nature and appearance of these nurseries change within and among galaxies," he continued, "just like cities or trees may vary in important ways as you go from place to place across the world."

Astronomers have also learned from the survey that stellar nurseries aren't particularly efficient at producing stars and tend to live for only 10 to 30 million years, which isn't very long on a universal scale.

Looking ahead: Data from the survey is now publicly available, so expect to see other researchers using it to make their own observations about stellar nurseries in the future.

"We have an incredible dataset here that will continue to be useful," Leroy said. "This is really a new view of galaxies and we expect to be learning from it for years to come."

Quantcast