Your brain invents its own code. Can we create an A.I. mind like that?

When it comes to creating minds, cognitive scientist Joscha Bach explains where we are with artificial intelligence, and where we need to be.

Joscha Bach: If you look at our current technological systems they are obviously nowhere near where our minds are. They are very different. And one of the biggest questions for me is: What’s the difference between where we are now and where we need to be if we want to build minds—If we want to build systems that are generally intelligent and self-motivated and maybe self-aware? And, of course, the answer to this is 'we don’t know' because if we knew we’d have already done it. But there are basically several perspectives on this. One is our minds as general learning systems that are able to model arbitrary things, including themselves, and if there are this, they probably need a very distinct set of motivations, needs; things that they want to do. I think that humans get their specifics due to their particular needs. We have cognitive and social and physiological needs and they turn us into who we are. Our motivations determine where we put our attention, what we learn and what we actually do in the world—what we model, how we perceive, what we are conscious of. In a similar sense, it might be that it’s sufficient to build a general learning architecture and combine this with a good motivational system.

And we are not there yet in building a general learning architecture. For instance, our minds can learn and create new algorithms that can be used to write code and invent code, programming code for instance, or the rules that you need to build a shop and run that shop if you’re a shopkeeper, which is some kind of programming task in its own right. We don’t know how to build a system that is able to do this yet. It involves, for instance, that we have systems that are able to learn loops and we have some techniques to do this, for instance, a long- and short-term memory and a few other tricks, but they’re nowhere near what people can do so far. And it’s not quite clear how much work needs to be done to extend these systems into what people can do. It could be that it’s very simple. It could be that it’s going to take a lot of research. The dire view, which is more the traditional view, is that human minds have a lot of complexity, that you need to build a lot of functionality into it, like in Minsky's society of mind, to get to all the tricks that people are up to. And if that is the case then it might take a very long time until we have re-created all these different functional mechanisms. But I don’t think that it’s going to be so dire, because our genome is very short and most of that codes for a single cell. Very little of it codes for the brain. And I think a cell is much more complicated than a brain. A brain is probably largely self-organizing and built not like clockwork but like a cappuccino—so you mix the right ingredients and then you let it percolate and then it forms a particular kind of structure. So I do think, because nature pulls it off pretty well in most of the cases, that even though a brain probably needs more complexity than a cappuccino—dramatically more—it’s going to be much simpler than a very complicated machine like a cell.

A.I. can perform tricks, but can it truly think? Cognitive scientist Joscha Back explains where we are on the path to artificial general intelligence, and where we need to be. The human mind can invent its own code and create models of arbitrary things—including itself—but we don't know how to build a mind quite like that just yet. To achieve A.G.I., will programmers have to re-create every single functional mechanism of the human brain? There are many schools of thought, but Bach's perspective is that the tinkering may not have to be as granular as many assume. Creating a mind may even be simpler (relatively speaking) than creating a single cell. Why? Because the human brain, says Bach, is less like clockwork and more like a cappuccino. "You mix the right ingredients and then you let it percolate and then it forms a particular kind of structure. So I do think, because nature pulls it off pretty well in most of the cases, that even though a brain probably needs more complexity than a cappuccino—dramatically more—it’s going to be much simpler than a very complicated machine like a cell,' he says. Joscha Bach's latest book is Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition (Oxford Series on Cognitive Models and Architectures)

Your genetics influence how resilient you are to the cold

What makes some people more likely to shiver than others?

KIRILL KUDRYAVTSEV/AFP via Getty Images
Surprising Science

Some people just aren't bothered by the cold, no matter how low the temperature dips. And the reason for this may be in a person's genes.

Keep reading Show less

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source: whrc.org

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source: whrc.org

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source: whrc.org

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

Cephalopod aces 'marshmallow test' designed for eager children

The famous cognition test was reworked for cuttlefish. They did better than expected.

Credit: Hans Hillewaert via Wikicommons
Surprising Science
  • Scientists recently ran the Stanford marshmallow experiment on cuttlefish and found they were pretty good at it.
  • The test subjects could wait up to two minutes for a better tasting treat.
  • The study suggests cuttlefish are smarter than you think but isn't the final word on how bright they are.
Keep reading Show less
Quantcast