Bill Nye Explains How Evolution Gave Us the Golden Rule

Charlie comes to Bill with a question about the balance between the ethics of scientific concepts and those scientific concepts in and of themselves. In response, the Science Guy demonstrates how the two ideas — an idea and its ethical implications — are innately inseparable.

Charlie: Bill Nye, I love your work. My name’s Charlie and my question today is associated with you as a scientist and how you’ve evolved over time to deal with both science itself and the ethics and morals associated with science. I'll start off with this quote: "So science can tell you how to clone a Tyrannosaurus rex; humanities can tell you why this might be a bad idea." So my question today is whether or not you prefer to deal with the morals and ethics associated with scientific concepts or the exploration and explanation of the concepts themselves and which one engages you to a greater extent?

Bill Nye: Charlie, this is a great question. In mathematics, you may have run across the word integer and you may know the word integral and you may know the word integral. It’s integral to my outlook, or whatever. What we want is for everybody to be a complete person with a complete point of view, a complete understanding of the process of science which enables humankind to know nature. But also to have an appreciation for what it means to be a member of the tribe, to be a human, to be living here on Earth with other humans and other species. So we want you to have both an appreciation for the process of science and an appreciation for ethics or what seems to be the best way to live, the best way to conduct yourself on Earth and especially in the human tribe.

So with that said when it comes to ethics I always, pretty much always, harken to evolution and here’s the extraordinary claim and you can evaluate this, Charlie. That not only is our size and shape, the number of fingers we have, our eye color and hair color and skin color associated with our ancestors and the genes that were passed to us through the process of evolution. But furthermore what we feel is a result of evolution. Our ancestors who were antisocial jerks got pushed aside by the ones that were perhaps more social and less jerky. However, you don’t want to be meek. You want to have the right level of aggression and the right level of accommodation with your fellow creatures. And when it comes to ethics, when you look at whatever scheme you feel is most reasonable to pass your genes on into the future that usually leads to what we all consider ethical behavior. And the classic example, this is not my fault — don’t come running to me Charlie, okay. This is a thought experiment, Charlie, okay. Don’t bust my chops. It’s not a real thing. The house is on fire. You have a chance to either save your son or your grandson. By the rules of this thought experiment you can’t save both. You can’t say well I find a firehose and I call in The Terminator and he can walk through fire. No. You pick your grandson. You always pick the grandson. You will feel that because that passes the genes farther into the future if you’re a guy. If you’re a woman, you’ll pick whichever offspring is farthest in the future. It’s the same thing.

So when it comes to how you should treat other people who are not part of your family, everybody is a human and is somehow related. If you go far enough back, everybody is related as troubling as that may seem. And so this old thing expressed as the Golden Rule — do onto others as you would have them do onto you. If you can do that, Charlie, I think you will get through life as well or better than anyone. Carry on.

 

In today's #TuesdaysWithBill, Charlie comes to Bill with a question about the balance between the ethics of scientific concepts and those same scientific concepts in and of themselves. In response, the Science Guy demonstrates how the two ideas — an idea and its ethical implications — are innately inseparable. Bill also delves into a popular thought experiment involving a burning building: If you could only save one person, who would you save: your child or your grandchild? The correct answer makes ethical and biological sense for the same reason, and Bill explains why.

Meet Dr. Jennifer Doudna: she's leading the biotech revolution

She helped create CRISPR, a gene-editing technology that is changing the way we treat genetic diseases and even how we produce food.

Courtesy of Jennifer Doudna
Technology & Innovation

This article was originally published on our sister site, Freethink.

Last year, Jennifer Doudna and Emmanuelle Charpentier became the first all-woman team to win the Nobel Prize in Chemistry for their work developing CRISPR-Cas9, the gene-editing technology. The technology was invented in 2012 — and nine years later, it's truly revolutionizing how we treat genetic diseases and even how we produce food.

CRISPR allows scientists to alter DNA by using proteins that are naturally found in bacteria. They use these proteins, called Cas9, to naturally fend off viruses, destroying the virus' DNA and cutting it out of their genes. CRISPR allows scientists to co-opt this function, redirecting the proteins toward disease-causing mutations in our DNA.

So far, gene-editing technology is showing promise in treating sickle cell disease and genetic blindness — and it could eventually be used to treat all sorts of genetic diseases, from cancer to Huntington's Disease.

The biotech revolution is just getting started — and CRISPR is leading the charge. We talked with Doudna about what we can expect from genetic engineering in the future.

This interview has been lightly edited and condensed for clarity.

Freethink: You've said that your journey to becoming a scientist had humble beginnings — in your teenage bedroom when you discovered The Double Helix by Jim Watson. Back then, there weren't a lot of women scientists — what was your breakthrough moment in realizing you could pursue this as a career?

Dr. Jennifer Doudna: There is a moment that I often think back to from high school in Hilo, Hawaii, when I first heard the word "biochemistry." A researcher from the UH Cancer Center on Oahu came and gave a talk on her work studying cancer cells.

I didn't understand much of her talk, but it still made a huge impact on me. You didn't see professional women scientists in popular culture at the time, and it really opened my eyes to new possibilities. She was very impressive.

I remember thinking right then that I wanted to do what she does, and that's what set me off on the journey that became my career in science.

Freethink: The term "CRISPR" is everywhere in the media these days but it's a really complicated tool to describe. What is the one thing that you wish people understood about CRISPR that they usually get wrong?

Dr. Jennifer Doudna: People should know that CRISPR technology has revolutionized scientific research and will make a positive difference to their lives.

Researchers are gaining incredible new understanding of the nature of disease, evolution, and are developing CRISPR-based strategies to tackle our greatest health, food, and sustainability challenges.

Freethink: You previously wrote in Wired that this year, 2021, is going to be a big year for CRISPR. What exciting new developments should we be on the lookout for?

Dr. Jennifer Doudna: Before the COVID-19 pandemic, there were multiple teams around the world, including my lab and colleagues at the Innovative Genomics Institute, working on developing CRISPR-based diagnostics.

Traits that we could select for using traditional breeding methods, that might take decades, we can now engineer precisely in a much shorter time. — DR. JENNIFER DOUDNA

When the pandemic hit, we pivoted our work to focus these tools on SARS-CoV-2. The benefit of these new diagnostics is that they're fast, cheap, can be done anywhere without the need for a lab, and they can be quickly modified to detect different pathogens. I'm excited about the future of diagnostics, and not just for pandemics.

We'll also be seeing more CRISPR applications in agriculture to help combat hunger, reduce the need for toxic pesticides and fertilizers, fight plant diseases and help crops adapt to a changing climate.

Traits that we could select for using traditional breeding methods, that might take decades, we can now engineer precisely in a much shorter time.

Freethink: Curing genetic diseases isn't a pipedream anymore, but there are still some hurdles to cross before we're able to say for certain that we can do this. What are those hurdles and how close do you think we are to crossing them?

Dr. Jennifer Doudna: There are people today, like Victoria Gray, who have been successfully treated for sickle cell disease. This is just the tip of the iceberg.

There are absolutely still many hurdles. We don't currently have ways to deliver genome-editing enzymes to all types of tissues, but delivery is a hot area of research for this very reason.

We also need to continue improving on the first wave of CRISPR therapies, as well as making them more affordable and accessible.

Freethink: Another big challenge is making this technology widely available to everyone and not just the really wealthy. You've previously said that this challenge starts with the scientists.

Dr. Jennifer Doudna: A sickle cell disease cure that is 100 percent effective but can't be accessed by most of the people in need is not really a full cure.

This is one of the insights that led me to found the Innovative Genomics Institute back in 2014. It's not enough to develop a therapy, prove that it works, and move on. You have to develop a therapy that actually meets the real-world need.

Too often, scientists don't fully incorporate issues of equity and accessibility into their research, and the incentives of the pharmaceutical industry tend to run in the opposite direction. If the world needs affordable therapy, you have to work toward that goal from the beginning.

Freethink: You've expressed some concern about the ethics of using CRISPR. Do you think there is a meaningful difference between enhancing human abilities — for example, using gene therapy to become stronger or more intelligent — versus correcting deficiencies, like Type 1 diabetes or Huntington's?

Dr. Jennifer Doudna: There is a meaningful distinction between enhancement and treatment, but that doesn't mean that the line is always clear. It isn't.

There's always a gray area when it comes to complex ethical issues like this, and our thinking on this is undoubtedly going to evolve over time.

What we need is to find an appropriate balance between preventing misuse and promoting beneficial innovation.

Freethink: What if it turns out that being physically stronger helps you live a longer life — if that's the case, are there some ways of improving health that we should simply rule out?

Dr. Jennifer Doudna: The concept of improving the "healthspan" of individuals is an area of considerable interest. Eliminating neurodegenerative disease will not only massively reduce suffering around the world, but it will also meaningfully increase the healthy years for millions of individuals.

There is a meaningful distinction between enhancement and treatment, but that doesn't mean that the line is always clear. It isn't. — DR. JENNIFER DOUDNA

There will also be knock-on effects, such as increased economic output, but also increased impact on the planet.

When you think about increasing lifespans just so certain people can live longer, then not only do those knock-on effects become more central, you also have to ask who is benefiting and who isn't? Is it possible to develop this technology so the benefits are shared equitably? Is it environmentally sustainable to go down this road?

Freethink: Where do you see it going from here?

Dr. Jennifer Doudna: The bio revolution will allow us to create breakthroughs in treating not just a few but whole classes of previously unaddressed genetic diseases.

We're also likely to see genome editing play a role not just in climate adaptation, but in climate change solutions as well. There will be challenges along the way both expected and unexpected, but also great leaps in progress and benefits that will move society forward. It's an exciting time to be a scientist.

Freethink: If you had to guess, what is the first disease you think we are most likely to cure, in the real world, with CRISPR?

Dr. Jennifer Doudna: Because of the progress that has already been made, sickle cell disease and beta-thalassemia are likely to be the first diseases with a CRISPR cure, but we're closely following the developments of other CRISPR clinical trials for types of cancer, a form of congenital blindness, chronic infection, and some rare genetic disorders.

The pace of clinical trials is picking up, and the list will be longer next year.

Ancient megalodon shark was even bigger than estimated, finds study

A school lesson leads to more precise measurements of the extinct megalodon shark, one of the largest fish ever.

Credit: Catmando / Adobe Stock.
Surprising Science
  • A new method estimates the ancient megalodon shark was as long as 65 feet.
  • The megalodon was one of the largest fish that ever lived.
  • The new model uses the width of shark teeth to estimate its overall size.
Keep reading Show less

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

The power of authority: how easily we do what we’re told

Milgram's experiment is rightly famous, but does it show what we think it does?

Credit: MEHDI FEDOUACH via Getty Images
Mind & Brain
  • In the 1960s, Stanley Milgram was sure that good, law-abiding Americans would never be able to follow orders like the Germans in the Holocaust.
  • His experiments proved him spectacularly wrong. They showed just how many of us are willing to do evil if only we're told to by an authority figure.
  • Yet, parts of the experiment were set up in such a way that we should perhaps conclude something a bit more nuanced.
Keep reading Show less
Quantcast