Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Do Our Senses Reveal the World—Or Do They Obscure It?

Our brains didn't evolve to see the world accurately, we only perceive what is useful and apply meaning to it. Neuroscientist Beau Lotto shows us how the sausage of reality is made.

Beau Lotto: Is there an external reality? Of course there’s an external reality. The world exists. It’s just that we don’t see it. At least, we don’t see it as it is. In fact, we can never it as it is! In fact it’s even useful to not see it as it is. And the reason is because it goes back to really Berkeley, who tells us we have no direct access to that physical world other than through our senses.

And because our senses conflate multiple aspects of that world we can never know whether our perceptions are in any way accurate. And so this has always been a very deep question. It’s not so much “Do we see the world in the way it really is?” but “Do we actually even see it accurately?”. And the answer is no, we don’t. 

So if we remember that the information that’s coming on to your eye or onto your skin or into your ears is inherently meaningless (because it could mean anything) then it means that we need another kind of data in order to be able to generate behaviors that are useful. And that data is necessarily historical, which means that the functional structure of your brain is really a physical manifestation of your past interactions with the world, and it’s a physical, active interaction. It’s not passive, receiving data like a Facebook broadcast, it’s an active engagement with that world. 

So, for instance, if you take—there’s a well-known experiment back in the 70s where you had two kittens: recently born, eyes just open. 

And you had one kitten that was effectively running on the ground, right, perfectly fine. And you had another one that was in a basket. And the one in the basket was connected to the one on the ground, which meant that wherever the one in the basket went it was because it was where the one on the ground also went. The point is that they had the same visual history of the world. Then after a period of time you test the vision of the one on the ground, and it seems fine, as you would expect. But the question is: what does the one in the basket see? And the answer is that it doesn’t see anything. It’s blind, because it’s never been able to physically engage with the sources of this meaningless information and make meaning from it. So then when you let it run around, it learns to see again. 

Now sometimes it’s really difficult for people to understand that the data that your brain is receiving is meaningless, because when they open their eyes they look around and they say, “Well I see everything! What do you mean it’s meaningless?” 

So a really simple example, in fact it’s possibly one of the most fundamental examples, is color. So actually if you think about what they call “Dressgate”, right—the power of that I found really remarkable, because we’re all familiar with illusions and we’re all quite happy with the idea that someone who was a French speaker has a different word, different meaning than someone who’s an English speaker. 

Because we’re quite happy that things that are very cultural or in our own experience we can experience differently or we can have different concepts. 

But as soon as people realize that you can have different color perceptions, that really challenged them because it means if that’s true, what does it mean for the perception of reality, right? 

So color is a wonderful concept because it’s both very literal and abstract. And what’s true for color is true for everything about what we see. So take, for instance—what is the source of our perception of color? It’s light. And it’s light from 400 to 700 nanometers, which is actually a very tiny window of electromagnetic radiation. So even at that point we’re seeing a tiny window within the potential energy that we could in theory detect. 

What’s more, that’s a linear scale from 400 to 700, from small to large. But our perception of color, which starts with light, is anything but simple. In fact, it’s a three-dimensional perceptual space inside our head. So, for instance, you have a brightness axis, which is intensity. 

You have a saturation axis, which is how much gray is in the color: So a fire engine is very unsaturated or rather a very saturated red. And a pink is a relatively unsaturated red, it has gray in it. 

And then you have hue, which is red, green, blue and yellow. What’s remarkable is that the two ends of the spectrum, the physical spectrum, say short wavelengths (which we perceive to be violet and blue) and the other end of the spectrum (which we perceive to be red) are actually perceptually more similar to each other than they are to the middle part of the spectrum, which means that our perception of color is a circle. 

Which means the largest and the smallest stimuli are actually perceptually similar to each other, which is like one kilo feeling a lot like a thousand kilos and very different from five hundred kilos, right? So even at that most basic level what we’re seeing is not what’s actually even in the stimulus. 

What’s more is our perception of color is categorical. You can define every color in terms of red, green, blue and yellow. And each category is defined by what we call unique hue. A perception of redness, that has no other hue in it. Whereas orange, you can perceive sort of a combination of red and yellow. But with red you only see red. Yellow you only see yellow. But there’s nothing unique about spectra. There’s nothing categorical about spectra. They’re continuous distributions, right.

So at this most basic level we don’t represent even the information we’re getting in any accurate way. And the reason is because it was useful to see it this way. So we’re seeing the utility of the data, not the data.

 

We know the world exists, we just don’t know what it actually looks like—and it's likely that we never will, says neuroscientist Beau Lotto. Humans can only access reality, whatever it may be, through the filter of our sensory organs, which interpret "inherently meaningless" data in ways that are useful for our survival. We don't see the world as it is, we see the world that helps us to live. It can be a concept that's hard to wrap your mind around: how is that chair not as I see it? What color is an apple, really? Lotto calls on two clarifying examples: "Dressgate", which blew people's minds in 2015 and exposed that perception is not objective, and the color spectrum, of which we only see a small slice of. Beau Lotto is the author of Deviate: The Science of Seeing Differently.


Remote learning vs. online instruction: How COVID-19 woke America up to the difference

Educators and administrators must build new supports for faculty and student success in a world where the classroom might become virtual in the blink of an eye.

Credit: Shutterstock
Sponsored by Charles Koch Foundation
  • If you or someone you know is attending school remotely, you are more than likely learning through emergency remote instruction, which is not the same as online learning, write Rich DeMillo and Steve Harmon.
  • Education institutions must properly define and understand the difference between a course that is designed from inception to be taught in an online format and a course that has been rapidly converted to be offered to remote students.
  • In a future involving more online instruction than any of us ever imagined, it will be crucial to meticulously design factors like learner navigation, interactive recordings, feedback loops, exams and office hours in order to maximize learning potential within the virtual environment.
Keep reading Show less

White dwarfs hold key to life in the universe, suggests study

New study shows white dwarf stars create an essential component of life.

NASA and H. Richer (University of British Columbia)
Surprising Science
  • White dwarf stars create carbon atoms in the Milky Way galaxy, shows new study.
  • Carbon is an essential component of life.
  • White dwarfs make carbon in their hot insides before the stars die.
Keep reading Show less

"Forced empathy" is a powerful negotiation tool. Here's how to do it.

Master negotiator Chris Voss breaks down how to get what you want during negotiations.

Photo by Joe Raedle/Getty Images
Personal Growth
  • Former FBI negotiator Chris Voss explains how forced empathy is a powerful negotiating tactic.
  • The key is starting a sentence with "What" or "How," causing the other person to look at the situation through your eyes.
  • What appears to signal weakness is turned into a strength when using this tactic.
Keep reading Show less

Octopus-like creatures inhabit Jupiter’s moon, claims space scientist

A leading British space scientist thinks there is life under the ice sheets of Europa.

Credit: NASA/JPL-Caltech/SETI Institute
Surprising Science
  • A British scientist named Professor Monica Grady recently came out in support of extraterrestrial life on Europa.
  • Europa, the sixth largest moon in the solar system, may have favorable conditions for life under its miles of ice.
  • The moon is one of Jupiter's 79.
Keep reading Show less

How to catch a glimpse of Comet NEOWISE before it’s gone

Unless you plan to try again in 6,800 years, this week is your shot.

Image source: Sven Brandsma/Unsplash
Surprising Science
  • Comet NEOWISE will be most visible in the U.S. during the evenings from July 14-19, 2020.
  • After July 23rd, NEOWISE will be visible only through good binoculars and telescopes.
  • Look in the northwestern sky below the Big Dipper after dusk while there's a chance.

UPDATE: NASA is broadcasting a NASA Science Live episode highlighting Comet NEOWISE. NASA experts will discuss and answer public questions beginning at 3PM EST on Wednesday, July 15. Tune in via the agency's website, Facebook Live, YouTube, Periscope, LinkedIn, Twitch, or USTREAM.

Before last evening, July 14, 2020, the easiest way to see Comet NEOWISE — the brightest comet to zoom past Earth since 1977's Comet Hale-Bopp — from the United States was to catch it about an hour before sunrise. Now, however, you can see it in the evening, where it will remain for until the 19th. This is a definite don't-miss event — NEOWISE won't be coming back our way for another 6,800 years. It's the first major comet of the millennium, and by all accounts, it's unforgettable.

NEOWISE just got back from the Sun

Comet NEOWISE is named after the NASA infrared space telescope that first spotted it on March 27th. Its official moniker is C/2020 F3. It's estimated that the icy comet is about three miles across, not counting its tail.

NEOWISE is now heading away from our Sun, having made it closet approach, 27.4 million miles, to our star on July 3. The heat from that encounter is what's given NEOWISE its tail: It caused gas and dust to be released from the icy object, creating the tail of debris that looks so magical from here.

As NEOWISE moves closer to Earth, paradoxically, it will be less and less visible. By about July 23rd, you'll need binoculars or a telescope to see it at all. All of which makes this week prime time.

An evening delight

star constellation in sky

Image source: Allexxandar/Shutterstock/Big Think

First, find an unobstructed view of the northwest sky, free of streetlights, car headlights, apartment lights, and so on. And then, according to Sky & Telescope:

"Start looking about one hour after sunset, when you'll find it just over the northwestern horizon as the last of twilight fades into darkness."

It should be easy to spot since it's near to one of the most recognizable constellations up there, the Big Dipper. "Look about three fists below the bottom of the Big Dipper, which is hanging down by its handle high above, and from there perhaps a little to the right." Et voilà: Comet NEOWISE.

Says Sky & Telescope's Diana Hannikainen, "Look for a faint, fuzzy little 'star' with a fainter, fuzzier little tail extending upward from it."

The comet should be visible with the naked eye, though binoculars and a simple telescope may reveal more detail.

You may also be able to snap a photo of this special visitor, though you'll need the right gear to do so. A dedicated camera is more likely to capture a good shot than a telephone, but in either case, you'll need a tripod or some other means of holding the camera dead still as it takes a timed exposure of several seconds (not all phones can do this).

Quantcast