Scientists can now bottle solar energy, turn it into liquid fuel

The barrier to solar energy has always been storage. Now, bottled sunshine has a shelf-life of 18 years.

  • Researchers have invented a liquid isomer that can store and release solar energy.
  • The team has solved problems other researchers have previously encountered.
  • The discovery could lead to more widespread use of solar energy.

In the last year, a team from Chalmers University of Technology, Sweden, essentially figured out how to bottle solar energy. They developed a liquid fuel containing the compound norbornadiene that—when struck by sunlight—rearranges its carbon, hydrogen, and nitrogen atoms into an energy-storing isomer, quadricyclane. Quadricyclane holds onto the energy, estimated to be up to 250 watt-hours of energy per kilogram, even after it cools and for an extended period of time. For use, it's passed through a cobalt-based catalyst, at which point the energy is released as heat. The team's research could be a breakthrough in making solar energy transportable and thus even more usable for meeting real-world energy needs.

What's more, the team has been adjusting the molecular makeup of their fuel so that it doesn't break down as a result of storage and release cycles. It can be used over and over again. "We've run it though 125 cycles without any significant degradation," according to researcher Kasper Moth-Poulsen.

As a result, the scientists envision a round-trip energy system they call MOST, which stands for Molecular Solar Thermal Energy Storage.

The MOST system

(Chalmers University of Technology)

In the MOST system, the liquid runs through a concave solar thermal collector that has a pipe running across its center. The collector focuses sunlight on that pipe, and the fuel running through it, causing the transformation of norbornadiene into quadricyclane. The charged fuel then flows through transparent tubing into storage tanks, or it can be diverted and shipped elsewhere for use. Says Moth-Poulsen in the Chalmers press release, "The energy in this isomer can now be stored for up to 18 years. And when we come to extract the energy and use it, we get a warmth increase which is greater than we dared hope for."

To release the fuel's energy, it's passed through the catalyst in which a chemical reaction occurs to convert the fuel back into liquid whose temperature has been boosted by 63°C or 145°F. So, for example, if the fuel goes into the catalyst at 20°C, it comes out at 83°C. In this form, the fluid can be used for heating a home or business, or be used in any other system reliant on heated liquid. "You could use that thermal energy for your water heater, your dishwasher or your clothes dryer," MIT's Jeffrey Grossman tells NBC MACH. "There could be lots of industrial applications as well."

This last year has been a key time

(Johan Bodell)

Kasper Moth-Poulsen holds the tube containing the MOST catalyst

The first iteration of the Chalmers fuel was revealed about a year ago, and in the intervening months, the researchers have been working toward the robust behavior they're now seeing, even beyond achieving that remarkable 18-year storage potential. "We have made many crucial advances recently, and today we have an emissions-free energy system which works all year around," says Moth-Poulsen.

Though other researchers have experimented with similar uses for norbornadiene, their fuels broke down after just a few cycles before their research was abandoned. Those earlier fuels also didn't hold the energy very long.

The Chalmers team also originally had to mix their isomer with flammable toluene. Now, however, they've worked out a way to use the isomer without dangerous additives.

Storing solar energy

As the world moves to renewable energy, solar energy has proven to be among the most attractive: Sunlight is free and releasing its energy produces no pollution or harmful effects. One remaining limiting factor has been finding ways of storing solar energy that are as clean as solar energy itself. Much work is being down with batteries, but it's difficult to produce power cells without using toxic materials. The MOST system offers an exciting new angle to pursue.

Ha Jin on the wild and tragic life of China's greatest poet, Li Bai

The 8th century AD was a tough time to be a genius from a poor family in China. Poet and novelist Ha Jin on the tortured life of the legendary drunken poet Li Bai. Also: panpsychism, the value of idleness, and humanities education in America today.

Think Again Podcasts
  • "I knew in the case of Li Bai, I should follow the poems. Every masterpiece by him would be kind of a small crisis…a center for drama in his life."
  • "There are people who want a different kind of fulfillment. Society should be open to that. In the long run, you don't know—maybe those idlers can produce more for the society."
Keep reading Show less

Golden blood: the rarest blood in the world

We explore the history of blood types and how they are classified to find out what makes the Rh-null type important to science and dangerous for those who live with it.

Abid Katib/Getty Images
Surprising Science
  • Fewer than 50 people worldwide have 'golden blood' — or Rh-null.
  • Blood is considered Rh-null if it lacks all of the 61 possible antigens in the Rh system.
  • It's also very dangerous to live with this blood type, as so few people have it.
Keep reading Show less

Billionaire warlords: Why the future is medieval

The world's next superpower might just resurrect the Middle Ages.

Videos
  • Russia? China? No. The rising world superpower is the billionaire class. Our problem, says Sean McFate, is that we're still thinking in nation states.
  • Nation states have only existed for the last 300-400 years. Before that, wealthy groups – tribes, empires, aristocracies, etc – employed mercenaries to wage private wars.
  • As wealth inequality reaches combustion point, we could land back in the status quo ante of the Middle Ages. Who will our overlords be? Any or all of the 26 ultra-rich billionaires who own as much as the world's 3.8 billion poorest. What about Fortune 500, which is more powerful than most of the states in the world? Random billionaires, multinational corporations, and the extractive industry may buy armies and wage war on their own terms.
Keep reading Show less