Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

The next clean energy source? Snow.

Researchers from UCLA invent a device that generates electricity from a rather unusual source.

Photo credit: Bryce Evans on Unsplash
  • UCLA scientists have invented a cheap, flexible, and simple device called snow-TENG that generates electricity when it comes into contact with snow.
  • Scientists have known that snow carries an electrical charge for several decades, but this device is one of the first to capitalize on that effect.
  • The researchers believe that snow-TENG could be used in movement-tracking applications or as a simple weather station that requires no battery to operate.


The amount of effort that we spend digging up ancient plankton is starting to get more and more ridiculous. There's energy all around us that we can easily collect from the sun, wind, rivers, waves — and now from snow, too. Indeed, Maher El-Kady and Richard Kaner, two scientists from UCLA, recently published a paper in Nano Energy describing how they were able to construct a cheap, flexible, simple device — they call it the "snow-TENG" — that can generate electricity from falling snow.

How does it work?

snow-TENG is shown attached to the sole of a boot. In this use case, an individual walking across a snowy field could generate electricity for wearable devices or use snow-TENG to count their steps.

Abdelsalam Ahmed/UCLA

H2O is a polar molecule, meaning that one of its sides is negatively charged (specifically, the side with the oxygen atom) and the other is positively charged (the side with the two hydrogen atoms). When water molecules crystalize into snowflakes, they orient themselves such that the snowflake gets an overall charge. Friction, too, can confer an electrical charge to snowflakes.

The exact nature of the charge depends on the temperature: between −5°C and −10°C the charge tends to be positive, and between −15°C and −20°C the charge tends to be negative.

"Snow is already charged," said El-Kady in a UCLA statement, "so we thought, why not bring another material with the opposite charge and extract the charge to create electricity?" Materials like this are called triboelectric nanogenerators (or TENGs), named after the triboelectric effect, in which a material picks up the charge of another material through contact. For example, rubbing your hair on a balloon strips electrons off of your hair and onto the balloon, causing your positively charged hair to reach out towards the now-negatively charged balloon in pursuit of its stolen electrons — also known as static electricity.

"After testing a large number of materials including aluminum foils and Teflon, we found that silicone produces more charge than any other material," said El-Kady.

What can it be used for?

There are a significant number of potential applications for a device like this. It could, for instance, be attached to solar panels to provide energy when the sun is blocked by a snowstorm. It could be used to track the performance of cold-weather athletes, power small wearable devices, or a portable weather station. In addition, it could be coming to a neighborhood near you. "We believe our materials can be painted onto buildings to create electricity, and also provide protection against water and humidity," El-Kady told Popular Science.

One of the more impressive uses for snow-TENG is, of course, as a battery-free weather station. When particles of snow strike the device, it generates a variety of electrical signals that can be interpreted to determine the wind speed and direction in a snowstorm as well as the snowfall rate and accumulation.

Snow way

During the wintertime, up to a third of the planet becomes covered in snow, making devices like snow-TENG much more practical than they may initially sound. But, of course, one has to wonder how practical such a device will be in a future dominated by climate change. However, while many places will see less snow, climate change may actual increase snow fall in others, particularly in colder climates.

While free energy is always nice, it's important to stress that the snow-TENG is more of a proof of concept than a revolutionizing piece of new tech. During their tests, El-Kady and Kaner found that the device could output 0.2 milliwatts per square meter. As a comparison, a solar panel that's exactly one square meter could generate around 150 to 200 watts in good sunlight.

However, the device already works as a self-powered sensor of movement and weather, and the technology can likely be improved to generate more electricity. All told, snow-TENG demonstrates how much energy there is hiding in the background of our everyday environment.

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

Mystery effect speeds up the universe – not dark energy, says study

Russian astrophysicists propose the Casimir Effect causes the universe's expansion to accelerate.

Black hole accretion disk visualization.

Credits: NASA's Goddard Space Flight Center/Jeremy Schnittman
Surprising Science
  • Astrophysicists from Russia propose a theory that says dark energy doesn't exist.
  • Instead, the scientists think the Casimir Effect creates repulsion.
  • This effect causes the expansion of the universe to accelerate.
Keep reading Show less

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

How DNA revealed the woolly mammoth's fate – and what it teaches us today

Scientists uncovered the secrets of what drove some of the world's last remaining woolly mammoths to extinction.

Ethan Miller/Getty Images
Surprising Science

Every summer, children on the Alaskan island of St Paul cool down in Lake Hill, a crater lake in an extinct volcano – unaware of the mysteries that lie beneath.

Keep reading Show less
Scroll down to load more…
Quantcast