Tiny parasite-like robots are the future of pain relief

Researchers design microdevices that can gradually deliver medicine by latching on to intestines.

Tiny parasite-like robots are the future of pain relief

Dozens of theraggrippers on a swab.

Credit: Johns Hopkins University
  • A research team from Johns Hopkins University designs microdevices that can deliver medicine.
  • The tiny robots are based on parasite hookworms.
  • The machines can latch on to the intestines and gradually release pain-relieving drugs.

Researchers created tiny devices that can deliver drugs to the body by attaching themselves to a person's intestines.

The research team was led by engineering professor David Gracias and gastroenterologist Florin M. Selaru from Johns Hopkins University. The scientists took inspiration from the hookworm – parasitic worm that is known to dig its sharp teeth into the intestines of the host. The scientists created shape-shifting microdevices called "theragrippers" that can mimic the worm and latch on to the intestinal mucosa of a patient.

The six-pointed devices, each as large as a dust speck, are made of metal and thin film that can allow them to change shapes. They are covered by a heat-sensitive paraffin wax and have the potential to release a drug gradually into the body. This method improves upon other extended-release drugs that tend to go all the way through the gastrointestinal tract before fully dispensing all medicine.

"Normal constriction and relaxation of GI tract muscles make it impossible for extended-release drugs to stay in the intestine long enough for the patient to receive the full dose," explained Selaru." We've been working to solve this problem by designing these small drug carriers that can autonomously latch onto the intestinal mucosa and keep the drug load inside the GI tract for a desired duration of time."

The scientists say that thousands such devices can be let loose in a GI tract. As the wax coating on tiny robots matches the body's inside temperature, theraggrippers automatically close and latch on to the wall of the colon. As they do so and dig into the mucosa, they start slowly releasing the stored medicine. In time, the devices lose their grip on the intestine tissue and leave the organ through usual gastrointestinal function.

March of the microscopic robots

The very small robots don't rely on electricity or wireless signals, and don't have room for batteries, antennas, or any external controls, explained Gracias. Instead, the grippers work like "small, compressed springs with a temperature-triggered coating" which releases the stored energy.

In the trial, the researchers managed to fit about 6,000 such devices on a 3-inch silicon wafer. Experiments on rats showed a successful dispersion of pain-relieving drugs into the bloodstreams.

Check out the new study published in Science Advances.

How tiny bioelectronic implants may someday replace pharmaceutical drugs

Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.

Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.

Credit: Adobe Stock / SetPoint Medical
Sponsored by Northwell Health
  • Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
  • Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
  • Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
Keep reading Show less

Smart vultures never, ever cross the Spain-Portugal border. Why?

The first rule of Vulture Club: stay out of Portugal.

The first rule of Vulture Club: stay out of Portugal. (Image: Eneko Arrondo)
Surprising Science

So you're a vulture, riding the thermals that rise up over Iberia. Your way of life is ancient, ruled by needs and instincts that are way older than the human civilization that has overtaken the peninsula below, and the entire planet. 

Keep reading Show less

Best. Science. Fiction. Show. Ever.

"The Expanse" is the best vision I've ever seen of a space-faring future that may be just a few generations away.

Credit: "The Expanse" / Syfy
13-8
  • Want three reasons why that headline is justified? Characters and acting, universe building, and science.
  • For those who don't know, "The Expanse" is a series that's run on SyFy and Amazon Prime set about 200 years in the future in a mostly settled solar system with three waring factions: Earth, Mars, and Belters.
  • No other show I know of manages to use real science so adeptly in the service of its story and its grand universe building.
Keep reading Show less

How exercise changes your brain biology and protects your mental health

Contrary to what some might think, the brain is a very plastic organ.

PRAKASH MATHEMA/AFP via Getty Images
Mind & Brain

As with many other physicians, recommending physical activity to patients was just a doctor chore for me – until a few years ago. That was because I myself was not very active.

Keep reading Show less
Surprising Science

Here's a 10-step plan to save our oceans

By 2050, there may be more plastic than fish in the sea.

Quantcast