Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Scientists achieve teleportation breakthrough

Japanese researchers carry out quantum teleportation within a diamond.

Getty Images
  • Scientists figure out how to teleport information within a diamond.
  • The study took advantage of defects in the diamond's structure.
  • The achievement has implications for quantum computing.


Scientists from the Yokohama National University in Japan achieved the feat of teleporting quantum information within a diamond. Their study is an important step in the field of quantum information technology.

Hideo Kosaka, a professor of engineering at Yokohama National University, led the study. He explained that the goal was to get data where it doesn't normally go

"Quantum teleportation permits the transfer of quantum information into an otherwise inaccessible space," shared Kosaka. "It also permits the transfer of information into a quantum memory without revealing or destroying the stored quantum information."

The "inaccessible space" explored in the study was the lattice of carbon atoms in a diamond. The strength of the structure stems from the diamond's organization that has six protons and six neutrons in the nucleus, with six spinning electrons around it. As they bond to the diamond, the atoms form a super-strong lattice.

For their experiments, Kosaka and his team focused on defects that sometimes arise in diamonds, when a nitrogen atom appears in vacancies that would ordinarily house carbon atoms.

Kosaka's team manipulated an electron and a carbon isotope in such a vacancy by running a microwave and a radio wave into the diamond via a very thin wire – one fourth the width of a human hair. The wire was attached to the diamond, creating an oscillating magnetic field.

The scientists controlled the microwaves sent to the diamond to transfer information within it. In particular, they employed a nitrogen nano magnet to transfer the polarization state of a photon to a carbon atom, effectively achieving teleportation.

The diamond's lattice structure features a nitrogen-vacancy center with surrounding carbons. In this image, the carbon isotope (green) is initially entangled with an electron (blue) in the vacancy. It then waits for a photon (red) to be absorbed. This results in quantum teleportation-based state transfer of the photon into the carbon memory.

Credit: Yokohama National University

"The success of the photon storage in the other node establishes the entanglement between two adjacent nodes," Kosaka said, adding that their "ultimate goal" was to figure out how to make use of such processes "for large-scale quantum computation and metrology."

The accomplishment could prove vital in the quest for new ways to store and share sensitive information, with previous studies showing diamonds could house giant amounts of encrypted data.

Kosaka's team also included Kazuya Tsurumoto, Ryota Kuroiwa, Hiroki Kano, and Yuhei Sekiguchi.

You can find their study published in Communications Physics.

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

Masturbation boosts your immune system, helping you fight off infection and illness

Can an orgasm a day really keep the doctor away?

Sexual arousal and orgasm increase the number of white blood cells in the body, making it easier to fight infection and illness.

Image by Yurchanka Siarhei on Shutterstock
Sex & Relationships
  • Achieving orgasm through masturbation provides a rush of feel-good hormones (such as dopamine, serotonin and oxytocin) and can re-balance our levels of cortisol (a stress-inducing hormone). This helps our immune system function at a higher level.
  • The surge in "feel-good" hormones also promotes a more relaxed and calm state of being, making it easier to achieve restful sleep, which is a critical part in maintaining a high-functioning immune system.
  • Just as bad habits can slow your immune system, positive habits (such as a healthy sleep schedule and active sex life) can help boost your immune system which can prevent you from becoming sick.
Keep reading Show less

The biology of aliens: How much do we know?

Hollywood has created an idea of aliens that doesn't match the science.

The biology of aliens: How much do we know? | Michio Kaku, ...
Videos
  • Ask someone what they think aliens look like and you'll probably get a description heavily informed by films and pop culture. The existence of life beyond our planet has yet to be confirmed, but there are clues as to the biology of extraterrestrials in science.
  • "Don't give them claws," says biologist E.O. Wilson. "Claws are for carnivores and you've got to be an omnivore to be an E.T. There just isn't enough energy available in the next trophic level down to maintain big populations and stable populations that can evolve civilization."
  • In this compilation, Wilson, theoretical physicist Michio Kaku, Bill Nye, and evolutionary biologist Jonathan B. Losos explain why aliens don't look like us and why Hollywood depictions are mostly inaccurate.
Keep reading Show less

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

Scroll down to load more…
Quantcast