2018 Nobel Prize awarded to cancer immunotherapy pioneers

In the 1990s, the two scientists made key discoveries that led to the development of promising new cancer-fighting immunotherapy drugs.

nobel prize winners 2018
  • The two researchers, from the U.S. and Japan, made key discoveries about the immune system's response to cancer.
  • Their work showed how to block cancer cells from crippling white blood cells.
  • Still in its early stages, immunotherapy is a promising field in cancer research.

James Allison and Tasuku Honjo have won the 2018 Nobel Prize in Physiology or Medicine for their innovative work in developing immunotherapy treatments to fight cancer.

James P. Allison, 70, is the chair of the department of immunology at MD Anderson Cancer Center in Houston, Texas, and Tasuku Honjo, 76, is a professor at the Kyoto University Institute for Advanced Study in Japan. In the 1990s, the two scientists made separate breakthrough discoveries about the immune system that led to the development of immunotherapy drugs. They will share the $1 million prize.

Allison was in New York for an immunology conference when his son called early one morning to tell him the good news. An hour later, Allison and his colleagues were celebrating in a hotel room over champagne.

"It still hasn't completely dawned on me," said Allison, at a press conference. "I was a basic scientist. To have my work really impact people is one of the best things I could think about. It's everybody's dream."

Honjo also spoke about the personal satisfaction he gets from seeing his work benefit patients.

"When I'm thanked by patients who recover, I truly feel the significance of our research," Honjo said during a news conference at the Japanese university, according to Japanese news reports. He added: "I'd like to continue researching cancer for a while so that this immunotherapy will help save more cancer patients than ever before."

How immunotherapy works

Immunotherapy effectively removes the 'brakes' on the body's immune system, allowing for a certain type of white blood cell, called T-cells, to hunt down and kill cancer cells. Without immunotherapy treatment, cancer cells can deactivate T-cells by taking advantage of a switch on the cells, called an immune checkpoint. This shuts down the body's immune response and allows the cancer to spread unchecked.

Image: Nobel committee

Immunotherapies keep cancer-fighting T-cells active by blocking the immune checkpoints. In the 1990s, Allison and Honjo made key discoveries about immune checkpoints that later led to the development of immunotherapies that have proven successful in humans; Allison identified a checkpoint called CTLA-4, Honjo found another called PD-1.

The development and testing of immunotherapy drugs is still in early stages. However, immunotherapy has shown promising signs in recent years in combating several types of cancer, particularly lung cancer, even reversing the disease completely in some patients.

Revolutionary work

Photo: JONATHAN NACKSTRAND/AFP/Getty Images

Many scientists have helped develop the field of immunotherapy, but the work of Allison and Honjo helped build a foundation from which it could grow.

"I think they really deserve it," Jerome Galon, an immunologist at the Paris-based national biomedical research agency INSERM, told Nature. "You can always multiply and have many other people, but these are the obvious two first choices."

Their work "brought immunotherapy out from decades of skepticism" and has led to treatments that have improved an "untold number of people's health," Dr. Jedd Wolchok, a cancer specialist at Memorial Sloan Kettering Cancer Center in New York, told The New York Times.

The Nobel committee wrote that scientists have been searching for ways to bolster the immune system against cancer for more than a century, but the progress was "modest" until the revolutionary work of Allison and Honjo.

"Allison's and Honjo's discoveries have added a new pillar in cancer therapy. It represents a completely new principle, because unlike previous strategies, it is not based on targeting the cancer cells, but rather the brakes — the checkpoints — of the host immune system," Klas Kärre, a member of the Nobel Committee and an immunologist at the Karolinska Institute in Stockholm, said in a statement. "The seminal discoveries by the two laureates constitutes a paradigmatic shift and a landmark in the fight against cancer."

Every 27.5 million years, the Earth’s heart beats catastrophically

Geologists discover a rhythm to major geologic events.

Credit: desertsolitaire/Adobe Stock
Surprising Science
  • It appears that Earth has a geologic "pulse," with clusters of major events occurring every 27.5 million years.
  • Working with the most accurate dating methods available, the authors of the study constructed a new history of the last 260 million years.
  • Exactly why these cycles occur remains unknown, but there are some interesting theories.
Keep reading Show less

Babble hypothesis shows key factor to becoming a leader

Research shows that those who spend more time speaking tend to emerge as the leaders of groups, regardless of their intelligence.

Man speaking in front of a group.

Credit: Adobe Stock / saksit.
Surprising Science
  • A new study proposes the "babble hypothesis" of becoming a group leader.
  • Researchers show that intelligence is not the most important factor in leadership.
  • Those who talk the most tend to emerge as group leaders.
  • Keep reading Show less

    The first three minutes: going backward to the beginning of time with Steven Weinberg (Part 1)

    The great theoretical physicist Steven Weinberg passed away on July 23. This is our tribute.

    Credit: Billy Huynh via Unsplash
    13-8
    • The recent passing of the great theoretical physicist Steven Weinberg brought back memories of how his book got me into the study of cosmology.
    • Going back in time, toward the cosmic infancy, is a spectacular effort that combines experimental and theoretical ingenuity. Modern cosmology is an experimental science.
    • The cosmic story is, ultimately, our own. Our roots reach down to the earliest moments after creation.
    Keep reading Show less
    Surprising Science

    Ancient Greek military ship found in legendary, submerged Egyptian city

    Long before Alexandria became the center of Egyptian trade, there was Thônis-Heracleion. But then it sank.

    Quantcast