How kugelblitz black holes could power future spacecraft

In theory, we could use high-energy lasers to make our own artificial black holes, potentially capturing the enormous energy they emit.

  • We think of black holes as traditionally being formed when matter is packed so densely that the gravity they exert prevents even light from escaping their event horizon.
  • However, Einstein showed that energy and matter are equivalent; rather than taking the enormous amount of matter required to make a sufficiently sized black hole, we could make one using light, known as a kugelblitz.
  • If we had the technology to capture it, the energy from a kugelblitz would be extraordinarily useful.

Here's the recipe to make a black hole: start with a sizeable amount of hydrogen, enough to make a star about 25 times the mass of the sun. That hydrogen will begin burning into helium. Let the star cook for a few million years, and it'll start to run out of hydrogen to burn. Then it will begin burning helium into carbon or oxygen, these elements will fuse to make others in a chain of different fusion reactions, and eventually it will start producing iron. Iron can't produce energy via fusion, so the star will run out of the fuel that made it a star. Its mass will collapse inward and bounce off the iron core, producing a supernova. If you started with a big enough star, then much of its mass will be concentrated in a space so dense that light cannot escape, resulting in a perfectly cooked black hole.

While it's the classic recipe, there are actually several ways to make black holes, but none are quite so interesting as the kugelblitz.

A black hole made from light


The clouds of elements, or nebula, left behind after a supernova. When a star explodes in a supernova, often, a black hole is left behind.

As far as we know, most black holes are made from a tremendous amount of matter being concentrated in a very tightly packed space. In theory, though, this doesn't have to be the case. Einstein's formula E = mc2 tells us that energy is equivalent to matter times the speed of light squared. In regard to making black holes, this has three important implications for us: mass and energy are equivalent, mass has a tremendous amount of energy locked away inside of itself, and gravity treats mass and energy the same.

Here's where the kugelblitz comes in. German for "ball lightning," a kugelblitz is a black hole made from light rather than matter. By light, we mean any kind of radiation, really. Although light has no mass, it does have energy. Since gravity treats mass and energy the same, in theory, we can focus enough radiation into a tiny space and produce an event horizon, an area in space so densely packed (with either matter or energy) that nothing can escape.

If we developed a laser that shot gamma rays (the most energetic form of electromagnetic radiation) that was magnitudes more powerful than any laser ever built and focused it on a very precise point in space, we could make ourselves a kugelblitz. A single pulse of this laser would need to put out an amount of energy equivalent to the sun in about 1/10 of a second, but we could theoretically construct such a device in the distant future.

Why would we want to do this?

Wikimedia Commons

An artist's depiction of a black hole.

We wouldn't want to make a black hole large enough to sustain itself indefinitely. All black holes emit Hawking radiation, but we think that smaller ones emit more radiation than larger ones. At a certain point, a small black hole emits so much radiation that it can't sustain its size, even by gobbling up nearby matter and energy. Eventually, a small black hole radiates itself into nonexistence.

Jeffrey Lee of Baylor University has written several papers on kugelblitz black holes, one of which focuses on its potential practical uses. In an 2015 article for the Journal of the British Interplanetary Society called "Acceleration of a Schwarschild Kugelblitz Spaceship," Lee lays out the theoretical underpinnings of using a kugelblitz to, well, accelerate a spaceship.

If we had the capability to surround a kugelblitz with a Dyson sphere — hypothetical structures typically conceived of as surrounding and collecting the energy from stars — then we could capture the immense amount of energy it produces in the form of Hawking radiation. Since we would want to strike a balance between the kugelblitz's energy output and its lifespan (remember, the larger the black hole, the less Hawking radiation it produces, the longer it lives, and vice versa), Lee suggests producing an attometer-sized kugelblitz. That's a black hole one quintillionth the size of a meter.

Such a black hole would "live" for about 5 years and produce 129 petawatts of power, or 129 billion million watts. Attached to a perfectly efficient engine of a spacecraft, we could accelerate to 72% the speed of light before the kugelblitz dies, making interstellar travel a much more feasible proposition.

The hottest thing since the Big Bang

Could kugelblitzes be the spaceship engines of the future? Maybe. They also have the unfortunate property of being so hot that our current understanding of physics can't predict how they'll behave. Specifically, they would exceed the Planck temperature, which is 1.416808(33)×1032 kelvin, or (get ready for some zeroes) 142,000,000,000,000,000,000,000,000,000,000 K.

Here's the problem: That temperature is so hot that the math we use to predict the laws of physics breaks down. It's not that physics itself ceases to exist, but that our understanding is too limited to accurately say what will happen. As we progress in our technological capabilities and theoretical understanding, though, it may be that the use of kugelblitzes in spacecraft becomes our preferred method for interstellar travel.

Got a question for a real NASA astronomer? Ask it here!

NASA astronomer Michelle Thaller is coming back to Big Think to answer YOUR questions! Here's all you need to know to submit your science-related inquiries.


Big Think's amazing audience has responded so well to our videos from NASA astronomer and Assistant Director for Science Communication Michelle Thaller that we couldn't wait to bring her back for more!

And this time, she's ready to tackle any questions you're willing to throw at her, like, "How big is the Universe?", "Am I really made of stars?" or, "How long until Elon Musk starts a colony on Mars?"

All you have to do is submit your questions to the form below, and we'll use them for an upcoming Q+A session with Michelle. You know what to do, Big Thinkers!

Keep reading Show less

Why eating ice cream is linked to shark attacks

Why are soda and ice cream each linked to violence? This article delivers the final word on what people mean by "correlation does not imply causation."

  • Ice cream consumption is actually linked to shark attacks.
  • But the relationship is correlative, not causal.
  • It's pretty stunning how media outlets skip over this important detail.
Keep reading Show less
Politics & Current Affairs
  • The tongue-in-cheek petition, whose stated aim is to reduce the national debt, has been signed more than 8,600 times as of Tuesday.
  • Selling Montana, the fourth largest state in the country, would constitute the largest land deal since the Louisiana Purchase.
  • The national debt is often a source of concern for individuals, but the chances of the U.S. defaulting on its debts are relatively low — in part because the bulk of the national debt is owned by the American public.
Keep reading Show less

The answer to Skynet? A democratically controlled supermind.

The plan to stop megacorps from owning superintelligence is already underway.

  • A.I. technology is often developed within the proprietary silos of big tech companies. What if there was an open, decentralized hub for A.I. developers to share their creations? Enter SingularityNET.
  • The many A.I.s in the network could compete with each other to provide services for users but they could also cooperate, giving way to an emergent-level mind: artificial general intelligence.
  • SingularityNET is powered by blockchain technology, meaning whatever 'digital organism' emerges will not be owned or controlled by any one person, company or government.
Keep reading Show less