How humans evolved to live in the cold

Humans evolved to live in the cold through a number of environmental and genetic factors.

  • According to some relatively new research, many of our early human cousins preceded Homo sapien migrations north by hundreds of thousands or even millions of years.
  • Cross-breeding with other ancient hominids gave some subsets of human population the genes to contend and thrive in colder and harsher climates.
  • Behavioral and dietary changes also helped humans adapt to cold climates.

Humans emerged from a tropical environment. For the most part, our bodies are not well adapted to the cold. You might be feeling that this winter as you battle the frost winds and dream of sunnier days. The fact that we can live in cold climates is a result of many behavioral adaptations. Though, in recent years we've also found that some populations have genetically evolved to be able to better adapt and live in the cold.

The ability to survive and thrive in a cold environment comes from a few practical advances. One is the ability to adapt to the environment through clothing and shelter. Humans also have had to change their diet, as the local flora and fauna in colder areas doesn't contain those delicious primate fruits our early ape-like ancestors originally ate in the warm tropics.

Scientists have discovered that many early hominids left the cradle of humankind a lot sooner than we initially hypothesized. We've learned that through a combination of technology, cross-breeding hominids and some genetic mutations, humans were able to dominate all parts of the globe — even flourishing in the coldest of regions.

Environmental adaptation through early technology 

Image source: Wikimedia Commons

Throughout human evolution, a wide range of environmental change was also taking place. Many climate fluctuations included drastic cooling and desertification. The origin and emergence of our species through early hominins was heavily influenced by these changes. Humans and chimpanzees branched off of a common ancestor some 6 to 8 million years ago.

One of our distant cousins, the Neanderthal, branched off into Europe before Homo sapiens left the African plains. We can learn a lot about human's eventual adaptation to the cold through this subspecies of human – Homo neanderthalensis. They endured many large shifts in climate as they contended with many waning glacial and interglacial periods. Neanderthals were able to adapt for example by hunting cold-adapted animals in the winter like reindeer and then hunting red deer in warmer periods. They also tended to migrate southwards during warmer conditions.

The first known stone tools that date back to around 2.6 million years ago were instrumental in allowing us to shift our diet and interact with our new surroundings. Simple tools, which included fractured stones, gave us a way to crush, slice and pound up new food sources.

These basic tools gave us the ability to eat a wide range of foods no matter where we migrated to. Meat, for example, is a food that could be obtained from whatever environment early humans encountered and moved to. This could be a major contributing factor in our collective human march northwards.

Early hominid migrations north

Scientists have found evidence that early hominids groups migrated to the far north in a much earlier timeframe than we had originally believed. The fossil evidence at Dmanisi shows that some hominids migrated to the Anti-Caucasus mountains, which is a similar northern latitude to modern day New York or Beijing. This would have been a very difficult place to exist in for a species that had just come from Africa.

Paleoanthropologist Martha Tappen, who was part of the Dmanisi research team stated:

In terms of hominids spreading out of Africa, it seems that they did not spread with other fauna. That they made it to the higher latitudes without other animals moving at the same time tells you humans made it out of Africa not because the environment was changing or because the biome was moving... They went of their own volition.

What confuses researchers is that these hominids were found thousands of miles north of Africa without having any advanced technology to take them there.

Tapper goes on to say:

At the higher latitudes, you're confronting seasonality for the first time. . . They were experiencing winter. No other primate lives where there's no fruit in winter. There may be a dry season, but there's not a cold winter like these individuals in Dmanisi were experiencing.
It's believed that by shifting to a more meat-centric diet that they were able to live in such an environment. But dietary changes are just one piece of the puzzle for how and why humans were able to evolve and live in the cold.

Interbreeding with other hominid species 

Research suggests that by cross-breeding with Denisovans, many subsets of the human population had a boosted immune system and alterations in skin color. This also led to other cold tolerance adaptations.

For example, the EPAS1 gene, which is found in Tibetan populations, allows them to function at higher and colder altitudes. It's believed that this originated in our Denisovans cousins. While Denisovans and also Neanderthals originated from a common ancestor in Africa as well, they also spent hundreds of thousands of years in Eurasia before modern humans migrated there as well.

Breeding with our other Eurasian cousins gave us some genetic chutzpah to brave the cold.

Researchers also found that another Denisovans gene gave us an additional ability to handle colder temperatures. To test this hypothesis, researchers reviewed genomic data from a number of Greenlandic Inuits and then compared that to certain genes with Denisovans data.

It was found that there were similarities in the TBX15 and WARS2 genes, both which increase heat generation from body fat. Their conclusion was that genes found in the Inuit population were divergent from nearly every other human population, thus suggesting these genes were from a much different gene pool. Either it was from the Denisovans or another ancient hominid species breeding with them.

Mitochondrial DNA mutations in cold environments

According to research from the Biological Sciences and Molecular Medicine at the University of California Irvine, scientists discovered that after early humans had migrated to colder climates, their chance of survival increased when their mtDNA was mutated and generated greater body heat production.

Professor Douglas C. Wallace states that:

In the warm tropical and subtropical environments of Africa it was most optimal for more of the dietary calories to be allocated to ATP to do work and less to heat, thus permitting individuals to run longer, faster and to function better in hot climates… In Eurasia and Siberia, however, such an allocation would have resulted in more people being killed by the cold of winter. The mtDNA mutations made it possible for individuals to survive the winter, reproduce and colonize the higher latitudes.

A combination of all of these factors eventually led us to where we are today.

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

Where do atoms come from? Billions of years of cosmic fireworks.

The periodic table was a lot simpler at the beginning of the universe.

10 excerpts from Marcus Aurelius' 'Meditations' to unlock your inner Stoic

Great ideas in philosophy often come in dense packages. Then there is where the work of Marcus Aurelius.

(Getty Images)
Personal Growth
  • Meditations is a collection of the philosophical ideas of the Roman Emperor Marcus Aurelius.
  • Written as a series of notes to himself, the book is much more readable than the dry philosophy most people are used to.
  • The advice he gave to himself 2,000 years ago is increasingly applicable in our hectic, stressed-out lives.
Keep reading Show less

An organism found in dirt may lead to an anxiety vaccine, say scientists

Can dirt help us fight off stress? Groundbreaking new research shows how.

University of Colorado Boulder
Surprising Science
  • New research identifies a bacterium that helps block anxiety.
  • Scientists say this can lead to drugs for first responders and soldiers, preventing PTSD and other mental issues.
  • The finding builds on the hygiene hypothesis, first proposed in 1989.

Are modern societies trying too hard to be clean, at the detriment to public health? Scientists discovered that a microorganism living in dirt can actually be good for us, potentially helping the body to fight off stress. Harnessing its powers can lead to a "stress vaccine".

Researchers at the University of Colorado Boulder found that the fatty 10(Z)-hexadecenoic acid from the soil-residing bacterium Mycobacterium vaccae aids immune cells in blocking pathways that increase inflammation and the ability to combat stress.

The study's senior author and Integrative Physiology Professor Christopher Lowry described this fat as "one of the main ingredients" in the "special sauce" that causes the beneficial effects of the bacterium.

The finding goes hand in hand with the "hygiene hypothesis," initially proposed in 1989 by the British scientist David Strachan. He maintained that our generally sterile modern world prevents children from being exposed to certain microorganisms, resulting in compromised immune systems and greater incidences of asthma and allergies.

Contemporary research fine-tuned the hypothesis, finding that not interacting with so-called "old friends" or helpful microbes in the soil and the environment, rather than the ones that cause illnesses, is what's detrimental. In particular, our mental health could be at stake.

"The idea is that as humans have moved away from farms and an agricultural or hunter-gatherer existence into cities, we have lost contact with organisms that served to regulate our immune system and suppress inappropriate inflammation," explained Lowry. "That has put us at higher risk for inflammatory disease and stress-related psychiatric disorders."

University of Colorado Boulder

Christopher Lowry

This is not the first study on the subject from Lowry, who published previous work showing the connection between being exposed to healthy bacteria and mental health. He found that being raised with animals and dust in a rural environment helps children develop more stress-proof immune systems. Such kids were also likely to be less at risk for mental illnesses than people living in the city without pets.

Lowry's other work also pointed out that the soil-based bacterium Mycobacterium vaccae acts like an antidepressant when injected into rodents. It alters their behavior and has lasting anti-inflammatory effects on the brain, according to the press release from the University of Colorado Boulder. Prolonged inflammation can lead to such stress-related disorders as PTSD.

The new study from Lowry and his team identified why that worked by pinpointing the specific fatty acid responsible. They showed that when the 10(Z)-hexadecenoic acid gets into cells, it works like a lock, attaching itself to the peroxisome proliferator-activated receptor (PPAR). This allows it to block a number of key pathways responsible for inflammation. Pre-treating the cells with the acid (or lipid) made them withstand inflammation better.

Lowry thinks this understanding can lead to creating a "stress vaccine" that can be given to people in high-stress jobs, like first responders or soldiers. The vaccine can prevent the psychological effects of stress.

What's more, this friendly bacterium is not the only potentially helpful organism we can find in soil.

"This is just one strain of one species of one type of bacterium that is found in the soil but there are millions of other strains in soils," said Lowry. "We are just beginning to see the tip of the iceberg in terms of identifying the mechanisms through which they have evolved to keep us healthy. It should inspire awe in all of us."

Check out the study published in the journal Psychopharmacology.