Big ideas.
Once a week.
Subscribe to our weekly newsletter.
Scientists find the "magic number" that links forces of the universe
Researchers dramatically improve the accuracy of a number that connects fundamental forces.

The Universe and the fine-structure constant.
- A team of physicists carried out experiments to determine the precise value of the fine-structure constant.
- This pure number describes the strength of the electromagnetic forces between elementary particles.
- The scientists improved the accuracy of this measurement by 2.5 times.
Physicists determined with tremendous accuracy the value of what's been called "a magic number" and considered one of the greatest mysteries in physics by famed scientists like Richard Feynman. The fine-structure constant (denoted by the Greek α for "alpha") shows the strength of the electromagnetic forces between elementary particles like electrons and protons and is utilized in formulas pertaining to matter and light.
This pure number, with no units and dimensions, is key to the workings of the standard model of physics. Scientists were able to improve its precision 2.5 times or 81 parts per trillion (p.p.t.), determining the value of the constant to be α = 1/137.03599920611 (with the last two digits still being uncertain).
As the researchers write in their paper, pinpointing the fine-structure constant with remarkable exactitude is not just a complex undertaking but holds crucial importance "because discrepancies between standard-model predictions and experimental observations may provide evidence of new physics." Getting a very precise value for a fundamental constant can help make more accurate predictions and open up new paths and particles, as physicists look to reconcile their science with the fact that they still don't fully understand dark matter, dark energy, and the discrepancy between the amounts of matter and antimatter.
The fine-structure constant, first introduced in 1916, describes the strength of the electromagnetic interaction between light and charged elementary particles, like electrons and muons. Confirming the constant with such accuracy further cements the calculations at the basis of the standard model of physics. Other conclusions also stem from this knowledge, like the fact that an electron has no substructure and is indeed an elementary particle. If it could be broken down any further, it would exhibit a magnetic moment that would not conform to what was observed.
In an interview with Quanta Magazine, Nobel-Prize-winning physicist Eric Cornell (who was not involved in the study), explained that there are ratios of bigger objects to smaller ones that show up in "the physics of low-energy matter — atoms, molecules, chemistry, biology." And amazingly, "those ratios tend to be powers of the fine-structure constant," he added.
The process for measuring the fine-structure constant involved a beam of light from a laser that caused an atom to recoil. The red and blue colors indicate the light wave's peaks and troughs, respectively.
Credit: Nature
For the new measurement, the team of four physicists led by Saïda Guellati-Khélifa at the Kastler Brossel Laboratory in Paris, used the technique of matter-wave interferometry. This approach involves superimposing electromagnetic waves to cause an interference pattern, which is then studied for new information. In the particular experiment to obtain the new fine-structure constant value, the scientists directed a laser beam at super-cooled rubidium atoms to make them recoil while absorbing and emitting photons. By measuring the kinetic energy of the recoil, the scientists deduced the atom's mass, which was then used to figure out the electron's mass. The constant α was found in the next step, taken from the electron's mass and the binding energy of a hydrogen atom, which was arrived at by spectroscopy.
Check out the new paper published in the journal Nature.
- Universe works like a cosmological neural network, argues new paper ›
- Physicist discovers the explosions that will end our universe - Big ... ›
- Why number 137 is one of the greatest mysteries in physics - Big Think ›
‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create
How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.
- A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
- It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
- While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Tribalism and discrimination
<p>One question the "Genetic Pressure" series explores: What would tribalism and discrimination look like in a world with designer babies? As designer babies grow up, they could be noticeably different from other people, potentially being smarter, more attractive and healthier. This could breed resentment between the groups—as it does in the series.</p><p>"[Designer babies] slowly find that 'everyone else,' and even their own parents, becomes less and less tolerable," author Eugene Clark told Big Think. "Meanwhile, everyone else slowly feels threatened by the designer babies."</p><p>For example, one character in the series who was born a designer baby faces discrimination and harassment from "normal people"—they call her "soulless" and say she was "made in a factory," a "consumer product." </p><p>Would such divisions emerge in the real world? The answer may depend on who's able to afford designer baby services. If it's only the ultra-wealthy, then it's easy to imagine how being a designer baby could be seen by society as a kind of hyper-privilege, which designer babies would have to reckon with. </p><p>Even if people from all socioeconomic backgrounds can someday afford designer babies, people born designer babies may struggle with tough existential questions: Can they ever take full credit for things they achieve, or were they born with an unfair advantage? To what extent should they spend their lives helping the less fortunate? </p>Sexuality dilemmas
<p>Sexuality presents another set of thorny questions. If a designer baby industry someday allows people to optimize humans for attractiveness, designer babies could grow up to find themselves surrounded by ultra-attractive people. That may not sound like a big problem.</p><p>But consider that, if designer babies someday become the standard way to have children, there'd necessarily be a years-long gap in which only some people are having designer babies. Meanwhile, the rest of society would be having children the old-fashioned way. So, in terms of attractiveness, society could see increasingly apparent disparities in physical appearances between the two groups. "Normal people" could begin to seem increasingly ugly.</p><p>But ultra-attractive people who were born designer babies could face problems, too. One could be the loss of body image. </p><p>When designer babies grow up in the "Genetic Pressure" series, men look like all the other men, and women look like all the other women. This homogeneity of physical appearance occurs because parents of designer babies start following trends, all choosing similar traits for their children: tall, athletic build, olive skin, etc. </p><p>Sure, facial traits remain relatively unique, but everyone's more or less equally attractive. And this causes strange changes to sexual preferences.</p><p>"In a society of sexual equals, they start looking for other differentiators," he said, noting that violet-colored eyes become a rare trait that genetically engineered humans find especially attractive in the series.</p><p>But what about sexual relationships between genetically engineered humans and "normal" people? In the "Genetic Pressure" series, many "normal" people want to have kids with (or at least have sex with) genetically engineered humans. But a minority of engineered humans oppose breeding with "normal" people, and this leads to an ideology that considers engineered humans to be racially supreme. </p>Regulating designer babies
<p>On a policy level, there are many open questions about how governments might legislate a world with designer babies. But it's not totally new territory, considering the West's dark history of eugenics experiments.</p><p>In the 20th century, the U.S. conducted multiple eugenics programs, including immigration restrictions based on genetic inferiority and forced sterilizations. In 1927, for example, the Supreme Court ruled that forcibly sterilizing the mentally handicapped didn't violate the Constitution. Supreme Court Justice Oliver Wendall Holmes wrote, "… three generations of imbeciles are enough." </p><p>After the Holocaust, eugenics programs became increasingly taboo and regulated in the U.S. (though some states continued forced sterilizations <a href="https://www.uvm.edu/~lkaelber/eugenics/" target="_blank">into the 1970s</a>). In recent years, some policymakers and scientists have expressed concerns about how gene-editing technologies could reanimate the eugenics nightmares of the 20th century. </p><p>Currently, the U.S. doesn't explicitly ban human germline genetic editing on the federal level, but a combination of laws effectively render it <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">illegal to implant a genetically modified embryo</a>. Part of the reason is that scientists still aren't sure of the unintended consequences of new gene-editing technologies. </p><p>But there are also concerns that these technologies could usher in a new era of eugenics. After all, the function of a designer baby industry, like the one in the "Genetic Pressure" series, wouldn't necessarily be limited to eliminating genetic diseases; it could also work to increase the occurrence of "desirable" traits. </p><p>If the industry did that, it'd effectively signal that the <em>opposites of those traits are undesirable. </em>As the International Bioethics Committee <a href="https://academic.oup.com/jlb/advance-article/doi/10.1093/jlb/lsaa006/5841599#204481018" target="_blank" rel="noopener noreferrer">wrote</a>, this would "jeopardize the inherent and therefore equal dignity of all human beings and renew eugenics, disguised as the fulfillment of the wish for a better, improved life."</p><p><em>"Genetic Pressure Volume I: Baby Steps"</em><em> by Eugene Clark is <a href="http://bigth.ink/38VhJn3" target="_blank">available now.</a></em></p>The mystery of the Bermuda Triangle may finally be solved
Meteorologists propose a stunning new explanation for the mysterious events in the Bermuda Triangle.
One of life's great mysteries, the Bermuda Triangle might have finally found an explanation. This strange region, that lies in the North Atlantic Ocean between Bermuda, Miami and San Juan, Puerto Rico, has been the presumed cause of dozens and dozens of mind-boggling disappearances of ships and planes.
Astrophysicists find unique "hot Jupiter" planet without clouds
A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.
Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.
- Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
- Such planets were formed differently from others and offer unique research opportunities.
- Only one other such exoplanet was found previously.
Munazza Alam – a graduate student at the Center for Astrophysics | Harvard & Smithsonian.
Credit: Jackie Faherty
Jupiter's Colorful Cloud Bands Studied by Spacecraft
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8a72dfe5b407b584cf867852c36211dc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/GzUzCesfVuw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Lair of giant predator worms from 20 million years ago found
Scientists discover burrows of giant predator worms that lived on the seafloor 20 million years ago.
Bobbit worm (Eunice aphroditois)
- Scientists in Taiwan find the lair of giant predator worms that inhabited the seafloor 20 million years ago.
- The worm is possibly related to the modern bobbit worm (Eunice aphroditois).
- The creatures can reach several meters in length and famously ambush their pray.
A three-dimensional model of the feeding behavior of Bobbit worms and the proposed formation of Pennichnus formosae.
Credit: Scientific Reports
Beware the Bobbit Worm!
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="1f9918e77851242c91382369581d3aac"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/_As1pHhyDHY?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>FOSTA-SESTA: Have controversial sex trafficking acts done more harm than good?
The idea behind the law was simple: make it more difficult for online sex traffickers to find victims.
