Fast superhighway through the Solar System discovered

Scientists find routes using arches of chaos that can lead to much faster space travel.

Fast superhighway through the Solar System discovered

Arches of chaos in space manifolds.

Courtesy: Nataša Todorović, Di Wu and Aaron Rosengren/Science Advances
  • Researchers discovered a route through the Solar System that can allow for much faster spacecraft travel.
  • The path takes advantage of "arches of chaos" within space manifolds.
  • The scientists think this "celestial superhighway" can help humans get to the far reaches of the galaxy.

Humanity could be making its way through the Solar System much faster thanks to the discovery of a new superhighway network among space manifolds. Don't get your engines roaring along this "celestial autobahn" just yet, but the researchers believe the new pathways can eventually be used by spacecraft to get to the outer reaches of our Solar System with relative haste.

The celestial highway could get comets and asteroids from Jupiter to Neptune in less than a decade. Compare that to hundreds of thousands or even millions of years it might ordinarily take for space objects to traverse the Solar System. In a century of travel along the new routes, a 100 astronomical units could be covered, project the scientists. For reference, an astronomical unit is the average distance from the Earth to the Sun or about 93 million miles.

The international research team included Nataša Todorović, Di Wu, and Aaron Rosengren from the Belgrade Astronomical Observatory in Serbia, the University of Arizona, and UC San Diego. Their new paper proposes a dynamic route, going along connected series of arches within so-called space manifolds. These structures, coming into existence from gravitational effects between the Sun and the planets, stretch from the asteroid belt to past Uranus.

The most pronounced of these structures are linked to Jupiter by its strong gravitational pull, explained UC San Diego's press release. They influence the comets around the gas giant as well as smaller space objects called "centaurs," with are like asteroids in size but exhibit the composition of comets.

This animation shows space manifolds over a hundred years. Each frame of the animation shows how the arches and substructures appear over three-year increments.

Credit: Nataša Todorović, Di Wu and Aaron Rosengren/Science Advances

"Space manifolds act as the boundaries of dynamical channels enabling fast transportation into the inner- and outermost reaches of the Solar System," write the researchers. "Besides being an important element in spacecraft navigation and mission design, these manifolds can also explain the apparent erratic nature of comets and their eventual demise."

A closer image of the manifolds showing colliding and escaping objects.

Credit: Science Advances

The researchers discovered the structures by analyzing collected numerical data on the millions of orbits in the Solar System. The scientists figured out how these orbits were contained within known space manifolds. To detect the presences and structure of the space manifolds, the team employed the fast Lyapunov indicator (FLI), used to detect chaos. The scientists ran simulations to compute how the trajectories of particles approaching different planets like Jupiter, Uranus and Neptune would be affected by possible collisions and the manifolds.

While the results are encouraging, the next step is to figure out how these arches can be used by spacecraft for much speedier travel. It's also not clear how similar manifolds work near Earth. Also unclear is how they impact our planet's run-ins with asteroids and meteorites or any of the man-made objects floating up in space near us.

Check out the new paper "The arches of chaos in the Solar System" in Science Advances.

CT scans of shark intestines find Nikola Tesla’s one-way valve

Evolution proves to be just about as ingenious as Nikola Tesla

Credit: Gerald Schömbs / Unsplash
Surprising Science
  • For the first time, scientists developed 3D scans of shark intestines to learn how they digest what they eat.
  • The scans reveal an intestinal structure that looks awfully familiar — it looks like a Tesla valve.
  • The structure may allow sharks to better survive long breaks between feasts.
Keep reading Show less

“Acoustic tweezers” use sound waves to levitate bits of matter

The non-contact technique could someday be used to lift much heavier objects — maybe even humans.

Levitation by hemispherical transducer arrays.

Kondo and Okubo, Jpn. J. Appl. Phys., 2021.
Surprising Science
  • Since the 1980s, researchers have been using sound waves to move matter through a technique called acoustic trapping.
  • Acoustic trapping devices move bits of matter by emitting strategically designed sound waves, which interact in such a way that the matter becomes "trapped" in areas of particular velocity and pressure.
  • Acoustic and optical trapping devices are already used in various fields, including medicine, nanotechnology, and biological research.
Keep reading Show less

Cockatoos teach each other the secrets of dumpster diving

Australian parrots have worked out how to open trash bins, and the trick is spreading across Sydney.

Surprising Science
  • If sharing learned knowledge is a form of culture, Australian cockatoos are one cultured bunch of birds.
  • A cockatoo trick for opening trash bins to get at food has been spreading rapidly through Sydney's neighborhoods.
  • But not all cockatoos open the bins; some just stay close to those that do.
  • Keep reading Show less
    Culture & Religion

    Godzilla and mushroom clouds: How the first postwar nuclear tests made it to the silver screen

    The few seconds of nuclear explosion opening shots in Godzilla alone required more than 6.5 times the entire budget of the monster movie they ended up in.

    Quantcast