There is no dark matter. Instead, information has mass, physicist says

Is information the fifth form of matter?

Information in the universe. Is information the fifth form of matter?
Photo: Shutterstock
  • Researchers have been trying for over 60 years to detect dark matter.
  • There are many theories about it, but none are supported by evidence.
  • The mass-energy-information equivalence principle combines several theories to offer an alternative to dark matter.


The  “discovery” of dark matter

We can tell how much matter is in the universe by the motions of the stars. In the1920s, physicists attempting to do so discovered a discrepancy and concluded that there must be more matter in the universe than is detectable. How can this be?

In 1933, Swiss astronomer Fritz Zwicky, while observing the motion of galaxies in the Coma Cluster, began wondering what kept them together. There wasn't enough mass to keep the galaxies from flying apart. Zwicky proposed that some kind of dark matter provided cohesion. But since he had no evidence, his theory was quickly dismissed.

Then, in 1968, astronomer Vera Rubin made a similar discovery. She was studying the Andromeda Galaxy at Kitt Peak Observatory in the mountains of southern Arizona when she came across something that puzzled her. Rubin was examining Andromeda's rotation curve, or the speed at which the stars around the center rotate, and realized that the stars on the outer edges moved at the exact same rate as those at the interior, violating Newton's laws of motion. This meant there was more matter in the galaxy than was detectable. Her punch card readouts are today considered the first evidence of the existence of dark matter.

Many other galaxies were studied throughout the '70s. In each case, the same phenomenon was observed. Today, dark matter is thought to comprise up to 27% of the universe. "Normal" or baryonic matter makes up just 5%. That's the stuff we can detect. Dark energy, which we can't detect either, makes up 68%.

Dark energy is what accounts for the Hubble Constant, or the rate at which the universe is expanding. Dark matter on the other hand, affects how "normal" matter clumps together. It stabilizes galaxy clusters. It also affects the shape of galaxies, their rotation curves, and how stars move within them. Dark matter even affects how galaxies influence one another.

Leading theories on dark matter

NASA writes: 'This graphic represents a slice of the spider-web-like structure of the universe, called the "cosmic web." These great filaments are made largely of dark matter located in the space between galaxies.'

Credit: NASA, ESA, and E. Hallman (University of Colorado, Boulder)

Since the '70s, astronomers and physicists have been unable to identify any evidence of dark matter. One theory is it's all tied up in space-bound objects called MACHOs (Massive Compact Halo Objects). These include black holes, supermassive black holes, brown dwarfs, and neutron stars.

Another theory is that dark matter is made up of a type of non-baryonic matter, called WIMPS (Weakly Interacting Massive Particles). Baryonic matter is the kind made up of baryons, such as protons and neutrons and everything composed of them, which is anything with an atomic nucleus. Electrons, neutrinos, muons, and tau particles aren't baryons, however, but a class of particles called leptons. Even though the (hypothetical) WIMPS would have ten to a hundred times the mass of a proton, their interactions with normal matter would be weak, making them hard to detect.

Then there are those aforementioned neutrinos. Did you know that giant streams of them pass from the Sun through the Earth each day, without us ever noticing? They're the focus of another theory that says that neutral neutrinos, that only interact with normal matter through gravity, are what dark matter is comprised of. Other candidates include two theoretical particles, the neutral axion and the uncharged photino.

Now, one theoretical physicist posits an even more radical notion. What if dark matter didn't exist at all? Dr. Melvin Vopson of the University of Portsmouth, in the UK, has a hypothesis he calls the mass-energy-information equivalence. It states that information is the fundamental building block of the universe, and it has mass. This accounts for the missing mass within galaxies, thus eliminating the hypothesis of dark matter entirely.

Information theory 

To be clear, the idea that information is an essential building block of the universe isn't new. Classical Information Theory was first posited by Claude Elwood Shannon, the "father of the digital age" in the mid-20th century. The mathematician and engineer, well-known in scientific circles—but not so much outside of them, had a stroke of genius back in 1940. He realized that Boolean algebra coincided perfectly with telephone switching circuits. Soon, he proved that mathematics could be employed to design electrical systems.

Shannon was hired at Bell Labs to figure out how to transfer information over a system of wires. He wrote the bible on using mathematics to set up communication systems, thereby laying the foundation for the digital age. Shannon was also the first to define one unit of information as a bit.

There was perhaps no greater proponent of information theory than another unsung paragon of science, John Archibald Wheeler. Wheeler was part of the Manhattan Project, worked out the "S-Matrix" with Niels Bohr and helped Einstein develop a unified theory of physics. In his later years, he proclaimed, "Everything is information." Then he went about exploring connections between quantum mechanics and information theory.

He also coined the phrase "it from bit" or that every particle in the universe emanates from the information locked inside it. At the Santa Fe Institute in 1989, Wheeler announced that everything, from particles to forces to the fabric of spacetime itself "… derives its function, its meaning, its very existence entirely … from the apparatus-elicited answers to yes-or-no questions, binary choices, bits."

Part Einstein, part Landauer 

Vopson takes this notion one step further. He says that not only is information the essential unit of the universe but also that it is energy and has mass. To support this claim, he unifies and coordinates special relativity with the Landauer Principle. The latter is named after Rolf Landauer. In 1961, he predicted that erasing even one bit of information would release a tiny amount of heat, a figure which he calculated. Landauer said this proves information is more than just a mathematical quantity. This connects information to energy. Through experimental testing over the years, the Landauer Principle has held up.

Vopson says, "He [Landauer] first identified the link between thermodynamics and information by postulating that logical irreversibility of a computational process implies physical irreversibility." This indicates that information is physical, Vopson says, and demonstrates the link between information theory and thermodynamics.

In Vopson's theory, information, once created has "finite and quantifiable mass." It so far applies only to digital systems, but could very well apply to analogue and biological ones too, and even quantum or relativistic-moving systems. "Relativity and quantum mechanics are possible future directions of the mass-energy-information equivalence principle," he says.

In the paper published in the journal AIP Advances, Vopson outlines the mathematical basis for his hypothesis. "I am the first to propose the mechanism and the physics by which information acquires mass," he said, "as well as to formulate this powerful principle and to propose a possible experiment to test it."

The fifth state of matter

To measure the mass of digital information, you start with an empty data storage device. Next, you measure its total mass with a highly sensitive measuring apparatus. Then, you fill it and determine its mass. Next, you erase one file and evaluate it again. The trouble is, the "ultra-accurate mass measurement" device the paper describes doesn't exist yet. This would be an interferometer, something similar to LIGO. Or perhaps an ultrasensitive weighing machine akin to a Kibble balance.

"Currently, I am in the process of applying for a small grant, with the main objective of designing such an experiment, followed by calculations to check if detection of these small mass changes is even possible," Vopson says. "Assuming the grant is successful and the estimates are positive, then a larger international consortium could be formed to undertake the construction of the instrument." He added, "This is not a workbench laboratory experiment, and it would most likely be a large and costly facility." If eventually proved correct, Vopson will have discovered the fifth form of matter.

So, what's the connection to dark matter? Vopson says, "M.P. Gough published an article in 2008 in which he worked out … the number of bits of information that the visible universe would contain to make up all the missing dark matter. It appears that my estimates of information bit content of the universe are very close to his estimates."

CT scans of shark intestines find Nikola Tesla’s one-way valve

Evolution proves to be just about as ingenious as Nikola Tesla

Credit: Gerald Schömbs / Unsplash
Surprising Science
  • For the first time, scientists developed 3D scans of shark intestines to learn how they digest what they eat.
  • The scans reveal an intestinal structure that looks awfully familiar — it looks like a Tesla valve.
  • The structure may allow sharks to better survive long breaks between feasts.
Keep reading Show less

Are we really addicted to technology?

Fear that new technologies are addictive isn't a modern phenomenon.

Credit: Rodion Kutsaev via Unsplash
Technology & Innovation

This article was originally published on our sister site, Freethink, which has partnered with the Build for Tomorrow podcast to go inside new episodes each month. Subscribe here to learn more about the crazy, curious things from history that shaped us, and how we can shape the future.

In many ways, technology has made our lives better. Through smartphones, apps, and social media platforms we can now work more efficiently and connect in ways that would have been unimaginable just decades ago.

But as we've grown to rely on technology for a lot of our professional and personal needs, most of us are asking tough questions about the role technology plays in our own lives. Are we becoming too dependent on technology to the point that it's actually harming us?

In the latest episode of Build for Tomorrow, host and Entrepreneur Editor-in-Chief Jason Feifer takes on the thorny question: is technology addictive?

Popularizing medical language

What makes something addictive rather than just engaging? It's a meaningful distinction because if technology is addictive, the next question could be: are the creators of popular digital technologies, like smartphones and social media apps, intentionally creating things that are addictive? If so, should they be held responsible?

To answer those questions, we've first got to agree on a definition of "addiction." As it turns out, that's not quite as easy as it sounds.

If we don't have a good definition of what we're talking about, then we can't properly help people.

LIAM SATCHELL UNIVERSITY OF WINCHESTER

"Over the past few decades, a lot of effort has gone into destigmatizing conversations about mental health, which of course is a very good thing," Feifer explains. It also means that medical language has entered into our vernacular —we're now more comfortable using clinical words outside of a specific diagnosis.

"We've all got that one friend who says, 'Oh, I'm a little bit OCD' or that friend who says, 'Oh, this is my big PTSD moment,'" Liam Satchell, a lecturer in psychology at the University of Winchester and guest on the podcast, says. He's concerned about how the word "addiction" gets tossed around by people with no background in mental health. An increased concern surrounding "tech addiction" isn't actually being driven by concern among psychiatric professionals, he says.

"These sorts of concerns about things like internet use or social media use haven't come from the psychiatric community as much," Satchell says. "They've come from people who are interested in technology first."

The casual use of medical language can lead to confusion about what is actually a mental health concern. We need a reliable standard for recognizing, discussing, and ultimately treating psychological conditions.

"If we don't have a good definition of what we're talking about, then we can't properly help people," Satchell says. That's why, according to Satchell, the psychiatric definition of addiction being based around experiencing distress or significant family, social, or occupational disruption needs to be included in any definition of addiction we may use.

Too much reading causes... heat rashes?

But as Feifer points out in his podcast, both popularizing medical language and the fear that new technologies are addictive aren't totally modern phenomena.

Take, for instance, the concept of "reading mania."

In the 18th Century, an author named J. G. Heinzmann claimed that people who read too many novels could experience something called "reading mania." This condition, Heinzmann explained, could cause many symptoms, including: "weakening of the eyes, heat rashes, gout, arthritis, hemorrhoids, asthma, apoplexy, pulmonary disease, indigestion, blocking of the bowels, nervous disorder, migraines, epilepsy, hypochondria, and melancholy."

"That is all very specific! But really, even the term 'reading mania' is medical," Feifer says.

"Manic episodes are not a joke, folks. But this didn't stop people a century later from applying the same term to wristwatches."

Indeed, an 1889 piece in the Newcastle Weekly Courant declared: "The watch mania, as it is called, is certainly excessive; indeed it becomes rabid."

Similar concerns have echoed throughout history about the radio, telephone, TV, and video games.

"It may sound comical in our modern context, but back then, when those new technologies were the latest distraction, they were probably really engaging. People spent too much time doing them," Feifer says. "And what can we say about that now, having seen it play out over and over and over again? We can say it's common. It's a common behavior. Doesn't mean it's the healthiest one. It's just not a medical problem."

Few today would argue that novels are in-and-of-themselves addictive — regardless of how voraciously you may have consumed your last favorite novel. So, what happened? Were these things ever addictive — and if not, what was happening in these moments of concern?

People are complicated, our relationship with new technology is complicated, and addiction is complicated — and our efforts to simplify very complex things, and make generalizations across broad portions of the population, can lead to real harm.

JASON FEIFER HOST OF BUILD FOR TOMORROW

There's a risk of pathologizing normal behavior, says Joel Billieux, professor of clinical psychology and psychological assessment at the University of Lausanne in Switzerland, and guest on the podcast. He's on a mission to understand how we can suss out what is truly addictive behavior versus what is normal behavior that we're calling addictive.

For Billieux and other professionals, this isn't just a rhetorical game. He uses the example of gaming addiction, which has come under increased scrutiny over the past half-decade. The language used around the subject of gaming addiction will determine how behaviors of potential patients are analyzed — and ultimately what treatment is recommended.

"For a lot of people you can realize that the gaming is actually a coping (mechanism for) social anxiety or trauma or depression," says Billieux.

"Those cases, of course, you will not necessarily target gaming per se. You will target what caused depression. And then as a result, If you succeed, gaming will diminish."

In some instances, a person might legitimately be addicted to gaming or technology, and require the corresponding treatment — but that treatment might be the wrong answer for another person.

"None of this is to discount that for some people, technology is a factor in a mental health problem," says Feifer.

"I am also not discounting that individual people can use technology such as smartphones or social media to a degree where it has a genuine negative impact on their lives. But the point here to understand is that people are complicated, our relationship with new technology is complicated, and addiction is complicated — and our efforts to simplify very complex things, and make generalizations across broad portions of the population, can lead to real harm."

Behavioral addiction is a notoriously complex thing for professionals to diagnose — even more so since the latest edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the book professionals use to classify mental disorders, introduced a new idea about addiction in 2013.

"The DSM-5 grouped substance addiction with gambling addiction — this is the first time that substance addiction was directly categorized with any kind of behavioral addiction," Feifer says.

"And then, the DSM-5 went a tiny bit further — and proposed that other potentially addictive behaviors require further study."

This might not sound like that big of a deal to laypeople, but its effect was massive in medicine.

"Researchers started launching studies — not to see if a behavior like social media use can be addictive, but rather, to start with the assumption that social media use is addictive, and then to see how many people have the addiction," says Feifer.

Learned helplessness

The assumption that a lot of us are addicted to technology may itself be harming us by undermining our autonomy and belief that we have agency to create change in our own lives. That's what Nir Eyal, author of the books Hooked and Indistractable, calls 'learned helplessness.'

"The price of living in a world with so many good things in it is that sometimes we have to learn these new skills, these new behaviors to moderate our use," Eyal says. "One surefire way to not do anything is to believe you are powerless. That's what learned helplessness is all about."

So if it's not an addiction that most of us are experiencing when we check our phones 90 times a day or are wondering about what our followers are saying on Twitter — then what is it?

"A choice, a willful choice, and perhaps some people would not agree or would criticize your choices. But I think we cannot consider that as something that is pathological in the clinical sense," says Billieux.

Of course, for some people technology can be addictive.

"If something is genuinely interfering with your social or occupational life, and you have no ability to control it, then please seek help," says Feifer.

But for the vast majority of people, thinking about our use of technology as a choice — albeit not always a healthy one — can be the first step to overcoming unwanted habits.

For more, be sure to check out the Build for Tomorrow episode here.

Why the U.S. and Belgium are culture buddies

The Inglehart-Welzel World Cultural map replaces geographic accuracy with closeness in terms of values.

According to the latest version of the Inglehart-Welzel World Cultural Map, Belgium and the United States are now each other's closest neighbors in terms of cultural values.

Credit: World Values Survey, public domain.
Strange Maps
  • This map replaces geography with another type of closeness: cultural values.
  • Although the groups it depicts have familiar names, their shapes are not.
  • The map makes for strange bedfellows: Brazil next to South Africa and Belgium neighboring the U.S.
Keep reading Show less
Quantcast