Cancer cells hibernate to survive chemotherapy, finds study

Researchers discover that cancer cells go into hibernation to avoid chemotherapy effects.

Cancer cells hibernate to survive chemotherapy, finds study

Cancer cells.

Credit: Adobe Stock
  • Cancer cells go into a state similar to hibernation when attacked by chemotherapy.
  • The low-energy state is similar to diapause—the embryonic survival strategy of over a 100 species of mammals.
  • Researchers hope to use these findings to develop new cancer-fighting therapies.

When attacked by chemotherapy, all cancer cells have the ability to start hibernating in order to wait out the threat, finds new research. The cancer cells hijack an evolutionary survival mechanism to transition into a state of "rest" until chemotherapy stops. Devising therapies to target the cells in this slow-dividing state can prevent the cancer from regrowing.

The discovery was made by Dr. Catherine O'Brien and the team from the Princess Margaret Cancer Centre in Canada. Professor O'Brien, who teaches in the Department of Surgery at the University of Toronto, described that the tumor acts "like a whole organism, able to go into a slow-dividing state, conserving energy to help it survive."

She compared this to animals who enter hibernation to get through difficult environmental conditions. Dr. Aaron Schimmer, Director of the Research Institute and Senior Scientist at the Princess Margaret, was even more specific, sharing that the behavior of the cells was akin to that of "bears in winter."

"We never actually knew that cancer cells were like hibernating bears," explained Schimmer. "This study also tells us how to target these sleeping bears so they don't hibernate and wake up to come back later, unexpectedly."

He thinks this adaptation by the cells can be the key cause of resistance to drugs.

Cancer cells may go to into diapause, entering a drug-tolerant persister (DTP) state.

Credit: Cell

The scientists arrived at their observations by observing human colorectal cancer cells, which were treated with chemotherapy in a petri dish. This caused the cells to go into a slow-dividing state during which they ceased expanding and needed little nutrition. Such a reaction continued as long as chemotherapy was present.

The low-energy state of the cells was similar to diapause—the embryonic survival strategy of over a 100 species of mammals. They protect embryos by keeping them inside their bodies during extreme situations of very high or very low temperatures, or when sustenance is not available. Minimal cell division takes place when animals are in this state, while their metabolism slows to a crawl.

"The cancer cells are able to hijack this evolutionarily conserved survival strategy, even as it seems to be lost to humans," pointed out Dr. O'Brien.

When the cells are in this state, they activate a cellular process known as autophagy (means "self-devouring"). While this is taking place, and if no other nutrients are present, the cell feeds on its own proteins and other cellular parts to survive. Observing that, the scientists tried impeding autophagy and found that the cancer cells were destroyed, succumbing to chemotherapy. Knowing this can lead to new therapies, according to O'Brien, who proposed that "We need to target cancer cells while they are in this slow-cycling, vulnerable state before they acquire the genetic mutations that drive drug-resistance."

Check out the new study published in Cell.

From 1.8 million years ago, earliest evidence of human activity found

Scientists discover what our human ancestors were making inside the Wonderwerk Cave in South Africa 1.8 million years ago.

Inside the Kalahari Desert Wonderwerk Cave

Credit: Michael Chazan / Hebrew University of Jerusalem
Surprising Science
  • Researchers find evidence of early tool-making and fire use inside the Wonderwerk Cave in Africa.
  • The scientists date the human activity in the cave to 1.8 million years ago.
  • The evidence is the earliest found yet and advances our understanding of human evolution.
Keep reading Show less

How cell phone data can help redesign cities

With the rise of Big Data, methods used to study the movement of stars or atoms can now reveal the movement of people. This could have important implications for cities.

Credit: Getty Images
13-8
  • A treasure trove of mobility data from devices like smartphones has allowed the field of "city science" to blossom.
  • I recently was part of team that compared mobility patterns in Brazilian and American cities.
  • We found that, in many cities, low-income and high-income residents rarely travel to the same geographic locations. Such segregation has major implications for urban design.
Keep reading Show less

The never-ending trip: LSD flashbacks and a psychedelic disorder that can last forever

A small percentage of people who consume psychedelics experience strange lingering effects, sometimes years after they took the drug.

Credit Imageman Rez via Adobe Stock
Mind & Brain
  • LSD flashbacks have been studied for decades, though scientists still aren't quite sure why some people experience them.
  • A subset of people who take psychedelics and then experience flashbacks develop hallucinogen persisting perception disorder (HPPD), a rare condition in which people experience regular or near-constant psychedelic symptoms.
  • There's currently no cure for the disorder, though some studies suggest medications may alleviate symptoms.
Keep reading Show less
Mind & Brain

Mind and God: The new science of neurotheology

Studies show that religion and spirituality are positively linked to good mental health. Our research aims to figure out how and why.

Quantcast