Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

New research sheds light on a possible cause of autism: processed foods

The more we learn about the microbiome, the more the pieces are fitting together.

Florida, Sanibel Island, Jerry's Foods, supermarket Cereal Aisle.

Photo: Jeffrey Greenberg/Universal Images Group via Getty Images
  • A new study from the University of Central Florida makes the case for the emerging connection of autism and the human microbiome.
  • High levels of Propionic Acid (PPA), used in processed foods to extend shelf life, reduces neuronal development in fetal brains.
  • While more research is needed, this is another step in fully understanding the consequences of poor nutrition.


A new study from the University of Central Florida, published in Scientific Reports on June 19, makes the case for the emerging connection of autism and the human microbiome. High levels of Propionic Acid (PPA), which is used in processed foods to extend shelf life and inhibit the growth of mold, appears to reduce neuronal development in fetal brains.

Turning to diet to better understand autism is not new. This new study implicates the mother's diet in the onset of autism in the developing fetus. Such a finding, if proven true, could have important consequences for prenatal care moving forward.

As the team comprised of Latifa S. Abdelli, Aseela Samsam, and Saleh A. Naser writes, autism spectrum disorder (ASD) is marked by neuro-inflammation and gastrointestinal symptoms. The spectrum includes varying levels of impaired social communication, as well as repetitive behaviors that impede a child's learning progress and ability to relate to others.

The number of children diagnosed with ASD has been ticking up by the year, though as Silberman writes, the spectrum is not new. Still, something is changing in societies causing this surge. In 2000, the CDC observed one out of every 150 children exhibiting such behaviors; by 2018, that number climbed to one of out every 59.

Could Autism Be Caused by Gut Microbes? | Dr. Emeran Mayer

The research team notes that thousands of genes are associated with ASD. While there is no singular likely culprit — they believe it is an interplay between genetic and environmental forces — they focused on maternal immune system abnormalities. Naser, who specializes in gastroenterology research, homed in on PPA as he had previously observed high levels of this carboxylic acid in stool samples of children with autism.

Excessive PPA reduces the number of neurons in the brain while simultaneously overproducing glial cells, resulting in inflammation, a marker of autism. Increased amounts of PPA damage neuronal pathways that allow the brain to communicate with the body. This toxic cocktail matches the symptoms of autism: repetitive behaviors, mobility issues, trouble communicating with others.

PPA naturally occurs in the human microbiome. Increased amounts of the acid, consumed by mothers by way of processed foods, appears to have a negative effect on their children. Increased PPA crosses into the fetus, potentially stunting neuronal development, which could aid in triggering the cascading effects that lead to the spectrum.

The acid was first discovered in 1844 by Austrian chemist, Johann Gottlieb, who noticed it in degraded sugar products. Isolated, it gives off the scent of unpleasant body odor. Manufactured, however, it is used to stop molding in animal feed, as well as human food products, including grains, baked goods, and cheese. It is approved for usage in the EU, USA, Australia, and New Zealand.

Autistic child attends the World Autism Awareness Day 2019 celebrations on April 2, 2019 in Kuala Lumpur, Malaysia. Photo credit: Mohd Samsul Mohd Said / Getty Images

Previous research has linked too much PPA with everything from nose and throat irritation to birth defects and cancer (in rats). While it is generally considered low in toxicity if swallowed, this study from UCF suggests that its effects on the maternal microbiome is far greater than previously imagined. It is, according to the researchers, only a first step, but an important one:

"This research is only the first step towards better understanding of Autism Spectrum Disorder. But we have confidence we are on the right track to finally uncovering autism etiology."

There is no benefit without cost. The low health cost of vaccines, for example — some injuries compared to untold millions of lives saved — seems a worthwhile tradeoff.

The high cost of processed foods does not seem to be worth the tradeoff, however. Convenience food is a market creation, not an evolution in good nutrition. Bread should not last for weeks on a shelf. Animals should not be fattened with low-nutrition foodstuffs, especially if the chemistry involved in producing it is ultimately harming our species.

These are the real costs of our agricultural system, which is having a direct, negative impact on our microbiomes. The research might not provide the answers that we're predisposed to believing, but science is not about popularity of responses. PPA might not be the cause of autism, and this research requires follow-up studies, but still, it's pointing to one potentially important marker.

--

Stay in touch with Derek on Twitter and Facebook.

How accountability at work can transform your organization

If you don't practice accountability at work you're letting the formula for success slip right through your hands.

Videos
  • What is accountability? It's a tool for improving performance and, once its potential is thoroughly understood, it can be leveraged at scale in any team or organization.
  • In this lesson for leaders, managers, and individuals, Shideh Sedgh Bina, a founding partner of Insigniam and the editor-in-chief of IQ Insigniam Quarterly, explains why it is so crucial to success.
  • Learn to recognize the mindset of accountable versus unaccountable people, then use Shideh's guided exercise as a template for your next post-project accountability analysis—whether that project was a success or it fell short, it's equally important to do the reckoning.

What if Middle-earth was in Pakistan?

Iranian Tolkien scholar finds intriguing parallels between subcontinental geography and famous map of Middle-earth

Could this former river island in the Indus have inspired Tolkien to create Cair Andros, the ship-shaped island in the Anduin river?

Image: Mohammad Reza Kamali, reproduced with kind permission
Strange Maps
  • J.R.R. Tolkien himself hinted that his stories are set in a really ancient version of Europe.
  • But a fantasy realm can be inspired by a variety of places; and perhaps so is Tolkien's world.
  • These intriguing similarities with Asian topography show that it may be time to 'decolonise' Middle-earth.
Keep reading Show less

Giant whale sharks have teeth on their eyeballs

The ocean's largest shark relies on vision more than previously believed.

An eight-metre-long Whale shark swims with other fish at the Okinawa Churaumi Aquarium on February 26, 2010 in Motobu, Okinawa, Japan.

Photo by Koichi Kamoshida/Getty Images
Surprising Science
  • Japanese researchers discovered that the whale shark has "tiny teeth"—dermal denticles—protecting its eyes from abrasion.
  • They also found the shark is able to retract its eyeball into the eye socket.
  • Their research confirms that this giant fish relies on vision more than previously believed.
Keep reading Show less

A massive star has mysteriously vanished, confusing astronomers

A gigantic star makes off during an eight-year gap in observations.

Image source: ESO/L. Calçada
Surprising Science
  • The massive star in the Kinsman Dwarf Galaxy seems to have disappeared between 2011 and 2019.
  • It's likely that it erupted, but could it have collapsed into a black hole without a supernova?
  • Maybe it's still there, but much less luminous and/or covered by dust.

A "very massive star" in the Kinman Dwarf galaxy caught the attention of astronomers in the early years of the 2000s: It seemed to be reaching a late-ish chapter in its life story and offered a rare chance to observe the death of a large star in a region low in metallicity. However, by the time scientists had the chance to turn the European Southern Observatory's (ESO) Very Large Telescope (VLT) in Paranal, Chile back around to it in 2019 — it's not a slow-turner, just an in-demand device — it was utterly gone without a trace. But how?

The two leading theories about what happened are that either it's still there, still erupting its way through its death throes, with less luminosity and perhaps obscured by dust, or it just up and collapsed into a black hole without going through a supernova stage. "If true, this would be the first direct detection of such a monster star ending its life in this manner," says Andrew Allan of Trinity College Dublin, Ireland, leader of the observation team whose study is published in Monthly Notices of the Royal Astronomical Society.

So, em...

Between astronomers' last look in 2011 and 2019 is a large enough interval of time for something to happen. Not that 2001 (when it was first observed) or 2019 have much meaning, since we're always watching the past out there and the Kinman Dwarf Galaxy is 75 million light years away. We often think of cosmic events as slow-moving phenomena because so often their follow-on effects are massive and unfold to us over time. But things happen just as fast big as small. The number of things that happened in the first 10 millionth of a trillionth of a trillionth of a trillionth of a second after the Big Bang, for example, is insane.

In any event, the Kinsman Dwarf Galaxy, or PHL 293B, is far way, too far for astronomers to directly observe its stars. Their presence can be inferred from spectroscopic signatures — specifically, PHL 293B between 2001 and 2011 consistently featured strong signatures of hydrogen that indicated the presence of a massive "luminous blue variable" (LBV) star about 2.5 times more brilliant than our Sun. Astronomers suspect that some very large stars may spend their final years as LBVs.

Though LBVs are known to experience radical shifts in spectra and brightness, they reliably leave specific traces that help confirm their ongoing presence. In 2019 the hydrogen signatures, and such traces, were gone. Allan says, "It would be highly unusual for such a massive star to disappear without producing a bright supernova explosion."

The Kinsman Dwarf Galaxy, or PHL 293B, is one of the most metal-poor galaxies known. Explosive, massive, Wolf-Rayet stars are seldom seen in such environments — NASA refers to such stars as those that "live fast, die hard." Red supergiants are also rare to low Z environments. The now-missing star was looked to as a rare opportunity to observe a massive star's late stages in such an environment.

Celestial sleuthing

In August 2019, the team pointed the four eight-meter telescopes of ESO's ESPRESSO array simultaneously toward the LBV's former location: nothing. They also gave the VLT's X-shooter instrument a shot a few months later: also nothing.

Still pursuing the missing star, the scientists acquired access to older data for comparison to what they already felt they knew. "The ESO Science Archive Facility enabled us to find and use data of the same object obtained in 2002 and 2009," says Andrea Mehner, an ESO staff member who worked on the study. "The comparison of the 2002 high-resolution UVES spectra with our observations obtained in 2019 with ESO's newest high-resolution spectrograph ESPRESSO was especially revealing, from both an astronomical and an instrumentation point of view."

Examination of this data suggested that the LBV may have indeed been winding up to a grand final sometime after 2011.

Team member Jose Groh, also of Trinity College, says "We may have detected one of the most massive stars of the local Universe going gently into the night. Our discovery would not have been made without using the powerful ESO 8-meter telescopes, their unique instrumentation, and the prompt access to those capabilities following the recent agreement of Ireland to join ESO."

Combining the 2019 data with contemporaneous Hubble Space Telescope (HST) imagery leaves the authors of the reports with the sense that "the LBV was in an eruptive state at least between 2001 and 2011, which then ended, and may have been followed by a collapse into a massive BH without the production of an SN. This scenario is consistent with the available HST and ground-based photometry."

Or...

A star collapsing into a black hole without a supernova would be a rare event, and that argues against the idea. The paper also notes that we may simply have missed the star's supernova during the eight-year observation gap.

LBVs are known to be highly unstable, so the star dropping to a state of less luminosity or producing a dust cover would be much more in the realm of expected behavior.

Says the paper: "A combination of a slightly reduced luminosity and a thick dusty shell could result in the star being obscured. While the lack of variability between the 2009 and 2019 near-infrared continuum from our X-shooter spectra eliminates the possibility of formation of hot dust (⪆1500 K), mid-infrared observations are necessary to rule out a slowly expanding cooler dust shell."

The authors of the report are pretty confident the star experienced a dramatic eruption after 2011. Beyond that, though:

"Based on our observations and models, we suggest that PHL 293B hosted an LBV with an eruption that ended sometime after 2011. This could have been followed by
(1) a surviving star or
(2) a collapse of the LBV to a BH [black hole] without the production of a bright SN, but possibly with a weak transient."

Future of Learning

Changing the way we grade students could trigger a wave of innovation

How students apply what they've learned is more important than a letter or number grade.

Scroll down to load more…
Quantcast