Scientists discover how to convert type A and B blood into universal donor type O

Scientists may have found a reliable way to use a bacterial enzyme to convert any type of blood into type O, which is compatible with nearly everyone.

Scientists may have found a reliable way to use a bacterial enzyme to convert any type of blood into type O, which is compatible with nearly everyone.

At the 256th National Meeting & Exposition of the American Chemical Society, a team of researchers from the University of British Columbia described how they were able to use enzymes derived from bacteria in the human gut to remove markers called antigens from AB, A and B blood, effectively turning the blood into type O.

There are four basic types of blood groups: AB, A, B and O.

Each is distinguished by the presence of antigens, which are sugars that lie on red blood cells. Type A blood has A antigens. Type B blood has B antigens. Type AB has both.

Someone with type A blood can’t receive type B blood, and vice versa. That’s because the body will produce antibodies to attack red blood cells with antigens that don’t match its own. However, people with type AB blood are able to receive any type of blood because their red blood cells have both A and B antigens, so their bodies won’t produce antibodies. These people are called ‘universal recipients.’

Type O is often called the ‘universal donor’ because these red blood cells don’t have antigens. This type, specifically type O negative (which is the true ‘universal donor’), is the most valuable because it can be administered to virtually everyone. That’s why it’s often carried on medical helicopters.

Scientists have long searched for methods to convert AB, A and B blood into type O, but have had little success in developing a reliable and economic solution.

The new approach could change that. It turns out that microbes in the gut are really good at breaking down sugars found on proteins in the intestine. This process is fundamentally similar to removing the sugary antigens found on red blood cells, which is exactly what needs to occur to convert AB, A or B blood into type O.

“I was excited when I found this out—[it meant we might be] able to use microbes to find new [tools],” Peter Rahfeld, a biochemist who conducted the research alongside Stephen Withers at the University of British Columbia, told Smithsonian. “They’re all already in our guts, just waiting to be accessed. There’s so much potential.”

Using a technique called metagenomics, the team was able to take a large amount of microbes from a sample of human feces and “get a snapshot of all the DNA” found in the gut. The team then isolated bacterial genomes from the sample and tested thousands of enzymes, pitting them against sugary proxies that resembled A and B antigens.

One enzyme was found to be particularly effective at stripping away A antigens from red blood cells. What’s more, the researchers were able to combine their new enzyme with one that’s already known to remove B antigens from blood cells, providing a way to convert AB, A and B blood into type O.

At least in theory.

“Even with all these considerations, there are more problems we maybe [can’t anticipate]—we’ll see them when we actually test [the blood in a real body],” Jemila Caplan Kester, a microbiologist at the Massachusetts Institute of Technology, told Smithsonian. “The human body often finds ways to make [our experiments] not work.”

The researchers hope to continue exploring their new approach to blood type conversion in clinical trials. Their approach, if successful, could help alleviate the near-constant shortage of blood around the world.

In July, the American Red Cross issued an “urgent call for blood donors,” stating:

“The Red Cross escalated its call for blood and platelet donors after a difficult Independence Day week for donations. More than 550 fewer blood drives were organized by businesses and other community groups last week than during a typical week as individuals across the country celebrated the holiday and enjoyed summer activities. This could equate to as many as 15,000 fewer donations than needed, causing donations to now be distributed to hospitals faster than they come in.”

You can schedule an appointment to donate blood by visiting the American Red Cross website.

Related Articles

Quantum computing is on the way

Ready your Schrödinger's Cat Jokes.

Quantum entanglement. Conceptual artwork of a pair of entangled quantum particles or events (left and right) interacting at a distance. Quantum entanglement is one of the consequences of quantum theory. Two particles will appear to be linked across space and time, with changes to one of the particles (such as an observation or measurement) affecting the other one. This instantaneous effect appears to be independent of both space and time, meaning that, in the quantum realm, effect may precede cause.
Technology & Innovation
  • For a time, quantum computing was more theory than fact.
  • That's starting to change.
  • New quantum computer designs look like they might be scalable.

Quantum computing has existed in theory since the 1980's. It's slowly making its way into fact, the latest of which can be seen in a paper published in Nature called, "Deterministic teleportation of a quantum gate between two logical qubits."

To ensure that we're all familiar with a few basic terms: in electronics, a 'logic gate' is something that takes in one or more than one binary inputs and produces a single binary output. To put it in reductive terms: if you produce information that goes into a chip in your computer as a '0,' the logic gate is what sends it out the other side as a '1.'

A quantum gate means that the '1' in question here can — roughly speaking — go back through the gate and become a '0' once again. But that's not quite the whole of it.

A qubit is a single unit of quantum information. To continue with our simple analogy: you don't have to think about computers producing a string of information that is either a zero or a one. A quantum computer can do both, simultaneously. But that can only happen if you build a functional quantum gate.

That's why the results of the study from the folks at The Yale Quantum Institute saying that they were able to create a quantum gate with a "process fidelity" of 79% is so striking. It could very well spell the beginning of the pathway towards realistic quantum computing.

The team went about doing this through using a superconducting microwave cavity to create a data qubit — that is, they used a device that operates a bit like a organ pipe or a music box but for microwave frequencies. They paired that data qubit with a transmon — that is, a superconducting qubit that isn't as sensitive to quantum noise as it otherwise could be, which is a good thing, because noise can destroy information stored in a quantum state. The two are then connected through a process called a 'quantum bus.'

That process translates into a quantum property being able to be sent from one location to the other without any interaction between the two through something called a teleported CNOT gate, which is the 'official' name for a quantum gate. Single qubits made the leap from one side of the gate to the other with a high degree of accuracy.

Above: encoded qubits and 'CNOT Truth table,' i.e., the read-out.

The team then entangled these bits of information as a way of further proving that they were literally transporting the qubit from one place to somewhere else. They then analyzed the space between the quantum points to determine that something that doesn't follow the classical definition of physics occurred.

They conclude by noting that "... the teleported gate … uses relatively modest elements, all of which are part of the standard toolbox for quantum computation in general. Therefore ... progress to improve any of the elements will directly increase gate performance."

In other words: they did something simple and did it well. And that the only forward here is up. And down. At the same time.

Why Japan's hikikomori isolate themselves from others for years

These modern-day hermits can sometimes spend decades without ever leaving their apartments.

700,000 Japanese people are thought to be hikikomori, modern-day hermits who never leave their apartments (BEHROUZ MEHRI/AFP/Getty Images).
Mind & Brain
  • A hikikomori is a type of person in Japan who locks themselves away in their bedrooms, sometimes for years.
  • This is a relatively new phenomenon in Japan, likely due to rigid social customs and high expectations for academic and business success.
  • Many believe hikikomori to be a result of how Japan interprets and handles mental health issues.
Keep reading Show less

Scientists discover what caused the worst mass extinction ever

How a cataclysm worse than what killed the dinosaurs destroyed 90 percent of all life on Earth.

Credit: Ron Miller
Surprising Science

While the demise of the dinosaurs gets more attention as far as mass extinctions go, an even more disastrous event called "the Great Dying” or the “End-Permian Extinction” happened on Earth prior to that. Now scientists discovered how this cataclysm, which took place about 250 million years ago, managed to kill off more than 90 percent of all life on the planet.

Keep reading Show less