Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Are we alone in the universe? New Drake equation suggests yes

A fresh take on the decades-old Drake equation incorporates new factors and greater uncertainty, suggesting a high likelihood that humanity is alone in the universe.

(Credit: Pixabay Commons)


At the Los Alamos National Laboratory in 1950, physicist Enrico Fermi famously posed to his colleagues a simple question borne of complex math: ‘Where are they?’

He was asking about aliens—intelligent ones, specifically. The Italian-American scientist was puzzled as to why mankind hasn’t detected any signs of intelligent life beyond our planet. He reasoned that even if life is extremely rare, you’d still expect there to be many alien civilizations given the sheer size of the universe. After all, some estimates indicate that there is one septillion, or 1,000,000,000,000,000,000,000,000, stars in the universe, some of which are surrounded by planets that could probably support life.

So, where are they, and why aren’t they talking to us?

This is known as the Fermi paradox. It’s based on mathematical ideas like the Drake equation, which was devised to estimate the number of detectable civilizations in the Milky Way. Scientists use the equation by multiplying seven variables, as Elizabeth Howell outlined for Space:

N = R* • fp • ne • fl • fi • fc • L

  • N = The number of civilizations in the Milky Way Galaxy whose electromagnetic emissions are detectable.
  • R* = The rate of formation of stars suitable for the development of intelligent life.
  • fp = The fraction of those stars with planetary systems.
  • ne = The number of planets, per solar system, with an environment suitable for life.
  • fl = The fraction of suitable planets on which life actually appears.
  • fi = The fraction of life bearing planets on which intelligent life emerges.
  • fc = The fraction of civilizations that develop a technology that releases detectable signs of their existence into space.
  • L = The length of time such civilizations release detectable signals into space.

The Drake equation is incredibly speculative, or, as astronomer Jill Tarter once said, it’s “a wonderful way to organize our ignorance.” It remains a puzzling problem.

However, a new paper from scientists at the Future of Humanity Institute at Oxford University provides an updated Drake equation, one that incorporates “realistic distributions of uncertainty” and “models of chemical and genetic transitions on paths to the origin of life.” By doing so, the researchers say they dissolve the Fermi paradox and provide even more reason to think we’re alone in the universe.

The updated equation effectively takes each variable and combines many historical estimates that scientists have used to create an uncertainty range, one that highlights just how much scientists still don’t know, as study author Anders Sandberg told Universe Today:

“Many parameters are very uncertain given current knowledge. While we have learned a lot more about the astrophysical ones since Drake and Sagan in the 1960s, we are still very uncertain about the probability of life and intelligence. When people discuss the equation it is not uncommon to hear them say something like: 'this parameter is uncertain, but let’s make a guess and remember that it is a guess', finally reaching a result that they admit is based on guesses.

 "But this result will be stated as single number, and that anchors us to an *apparently* exact estimate—when it should have a proper uncertainty range. This often leads to overconfidence, and worse, the Drake equation is very sensitive to bias: if you are hopeful a small nudge upwards in several uncertain estimates will give a hopeful result, and if you are a pessimist you can easily get a low result.”

After Sandberg and his colleagues combined these uncertainties, the results showed a distribution pattern of the likelihood that humanity is alone in space.

“We found that even using the guesstimates in the literature (we took them and randomly combined the parameter estimates) one can have a situation where the mean number of civilizations in the galaxy might be fairly high—say, a hundred—and yet the probability that we are alone in the galaxy is 30%! The reason is that there is a very skew distribution of likelihood.

“If we instead try to review the scientific knowledge, things get even more extreme. This is because the probability of getting life and intelligence on a planet has an *extreme* uncertainty given what we know—we cannot rule out that it happens nearly everywhere there is the right conditions, but we cannot rule out that it is astronomically rare. This leads to an even stronger uncertainty about the number of civilizations, drawing us to conclude that there is a fairly high likelihood that we are alone. However, we *also* conclude that we shouldn’t be too surprised if we find intelligence!”

Scientists have devised a number of hypotheses to address the Fermi paradox, including ones that argue aliens have never existed; interstellar communication is technologically impossible; aliens are intentionally concealing themselves from us; and, perhaps most disturbing, that all intelligent species end up annihilating themselves before settling other planets.

So, what do Sandberg and his colleagues think about Fermi’s famous question: ‘Where are they?’

They wrote that aliens are “probably extremely far away, and quite possibly beyond the cosmological horizon and forever unreachable,” adding that their distribution shows a 39 percent to 85 percent chance that humans are alone in the universe.

But that’s not to say they think scientists should give up on the search for intelligent alien life.

“What we are not showing is that SETI is pointless—quite the opposite!” Sandberg said. “There is a tremendous level of uncertainty to reduce. The paper shows that astrobiology and SETI can play a big role in reducing the uncertainty about some of the parameters. Even terrestrial biology may give us important information about the probability of life emerging and the conditions leading to intelligence. Finally, one important conclusion we find is that lack of observed intelligence does not strongly make us conclude that intelligence doesn't last long: the stars are not foretelling our doom!”

LIVE ON MONDAY | "Lights, camera, activism!" with Judith Light

Join multiple Tony and Emmy Award-winning actress Judith Light live on Big Think at 2 pm ET on Monday.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo

Keep reading Show less

Neom, Saudi Arabia's $500 billion megacity, reaches its next phase

Construction of the $500 billion dollar tech city-state of the future is moving ahead.

Credit: Neom
Technology & Innovation
  • The futuristic megacity Neom is being built in Saudi Arabia.
  • The city will be fully automated, leading in health, education and quality of life.
  • It will feature an artificial moon, cloud seeding, robotic gladiators and flying taxis.
Keep reading Show less

Study details the negative environmental impact of online shopping

Frequent shopping for single items adds to our carbon footprint.

A truck pulls out of a large Walmart regional distribution center on June 6, 2019 in Washington, Utah.

Photo by George Frey/Getty Images
Politics & Current Affairs
  • A new study shows e-commerce sites like Amazon leave larger greenhouse gas footprints than retail stores.
  • Ordering online from retail stores has an even smaller footprint than going to the store yourself.
  • Greening efforts by major e-commerce sites won't curb wasteful consumer habits. Consolidating online orders can make a difference.
Keep reading Show less

The key to better quality education? Make students feel valued.

Building a personal connection with students can counteract some negative side effects of remote learning.

Future of Learning
  • Not being able to engage with students in-person due to the pandemic has presented several new challenges for educators, both technical and social. Digital tools have changed the way we all think about learning, but George Couros argues that more needs to be done to make up for what has been lost during "emergency remote teaching."
  • One interesting way he has seen to bridge that gap and strengthen teacher-student and student-student relationships is through an event called Identity Day. Giving students the opportunity to share something they are passionate about makes them feel more connected and gets them involved in their education.
  • "My hope is that we take these skills and these abilities we're developing through this process and we actually become so much better for our kids when we get back to our face-to-face setting," Couros says. He adds that while no one can predict the future, we can all do our part to adapt to it.
Keep reading Show less
Personal Growth

Childhood sleeping problems may signal mental disorders later in life

Chronic irregular sleep in children was associated with psychotic experiences in adolescence, according to a recent study out of the University of Birmingham's School of Psychology.

Scroll down to load more…
Quantcast