World first: Scientists successfully transplant lab-grown lungs into pigs

Lab-grown lungs have been successfully placed in pigs for the first time. How long until we get to humans?

An anatomical drawing of lungs. Credit: Public domain/Big Think
Credit: Public domain/Big Think

Authors note: We’ve included an image of the lung development process that may be considered sensitive.


Twenty Americans die every day while waiting for an organ donation. Between a limited number of donors, the difficulties of finding a proper match, and the particulars of time and place, the task of finding the right organ is often as difficult as it is pressing.   

This becomes even trickier in the case of lungs. Uniquely among organ donation, in cases where the donor's lung is not the proper size for the recipient, an adjustment must be made to make it fit the chest cavity, which increases the risk of complication. 

In cases where the donation does work, the recipient of the new lung is then put on immunosuppressants for the rest of their lives to assure their immune system doesn’t notice the large organs that aren’t native to the body and attack them. Despite this, symptoms of chronic rejection occur in half of all patients.  

A new study, however, offers us a glimpse at a world where organ shortages and rejection are a thing of the past.

Pigs with lab-grown lungs survive


Diagram of the fluidic system shows the microfluidic and pumping system. OS, oxygen sensor. (Nichols et al. Sci. Transl. Med)  

In a study published in Science Translational Medicine by Joan E. Nichols of the University of Texas and 26 others, lab-grown lungs were tailor-made for and transplanted into four unlucky pigs.

To grow these lungs, the researchers first built protein frameworks. They did this by taking a pig’s lung and blasting it clean of cells with a combination of detergents and sugars. This framework, which was not the first of its kind, was different from previous versions in that certain sugars were added to promote the stability of the proteins that remained.

These protein frameworks were then sunk into a nutrient vat. The researchers then added cells from the pigs that were to receive the new lungs and allowed the organs to grow for a month. The Franken-lungs were then transplanted into the pigs. The animals were later euthanized at different points in time to track the progress of the new lungs' integration into the body.


Left: the position of the pulmonary artery (Pa) and pulmonary vein (pv) in the organ chamber. Right: The new lungs are removed from the nutrient vat. (Nichols et al. Sci. Transl. Med)

In less than two weeks, the new lungs had begun to create the intricate system of blood vessels needed to work effectively. At the two-month point, when the last pig was killed and autopsied, there was no sign that the pigs were rejecting the new organs and the integration of the new lungs was progressing well. 

Could the pigs breathe?

"We do know that the animals had 100 percent oxygen saturation, as they had one normal functioning lung," study author Joaquin Cortiella said in a university news release. "Even after two months, the bioengineered lung was not yet mature enough for us to stop the animal from breathing on the normal lung and switch to just the bioengineered lung."

What’s the good news? 

This is the first step to demonstrating that lab-grown organs can be placed in the body and grow without rejection. In previous experiments, lab-grown lungs were unable to integrate into the cardiovascular system properly. These lungs did connect to the circulatory system, but not the pulmonary arteries, which would enable them to get oxygen into the blood.

Perhaps most amazingly, the risk of rejection is reduced dramatically with these lungs as the cells of the pigs that received them were used to make them. In a sense, the pigs were given their own lungs through this procedure. 

If this could be done in humans, waiting lists and the horrors of the body rejecting an organ would be a thing of the past as lab-grown organs take up the role that donated ones formerly held—or failed to.

What’s the grain of salt?

The pigs in this study were killed no more than two months after the donation to see how the lungs integrated themselves into the body. No evidence assures us this treatment would work long term. Likewise, there were only four pigs used in the study and more research is needed to demonstrate the effectiveness of the procedures. 

After that has been demonstrated, we’ll have to move over from pigs to people. Then we can look forward to a good decade of human trials before it becomes accepted medicine. This means you aren’t likely to get a new lung that was grown in a vat for some time. 

While lab-grown organs are still a way off, their potential is limitless. The days of dying while waiting for a donor may soon be a thing of the past as custom-made organs come out of labs and into operating rooms. While this is still the stuff of science fiction, it is moving ever closer to reality.

‘Designer baby’ book trilogy explores the moral dilemmas humans may soon create

How would the ability to genetically customize children change society? Sci-fi author Eugene Clark explores the future on our horizon in Volume I of the "Genetic Pressure" series.

Surprising Science
  • A new sci-fi book series called "Genetic Pressure" explores the scientific and moral implications of a world with a burgeoning designer baby industry.
  • It's currently illegal to implant genetically edited human embryos in most nations, but designer babies may someday become widespread.
  • While gene-editing technology could help humans eliminate genetic diseases, some in the scientific community fear it may also usher in a new era of eugenics.
Keep reading Show less

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

These are the world’s greatest threats in 2021

We look back at a year ravaged by a global pandemic, economic downturn, political turmoil and the ever-worsening climate crisis.

Luis Ascui/Getty Images
Politics & Current Affairs

Billions are at risk of missing out on the digital leap forward, as growing disparities challenge the social fabric.

Keep reading Show less

Columbia study finds new way to extract energy from black holes

A new study explains how a chaotic region just outside a black hole's event horizon might provide a virtually endless supply of energy.

Credit: NASA's Goddard Space Flight Center
Surprising Science
  • In 1969, the physicist Roger Penrose first proposed a way in which it might be possible to extract energy from a black hole.
  • A new study builds upon similar ideas to describe how chaotic magnetic activity in the ergosphere of a black hole may produce vast amounts of energy, which could potentially be harvested.
  • The findings suggest that, in the very distant future, it may be possible for a civilization to survive by harnessing the energy of a black hole rather than a star.
Keep reading Show less
Mind & Brain

A psychiatric diagnosis can be more than an unkind ‘label’

A popular and longstanding wave of thought in psychology and psychotherapy is that diagnosis is not relevant for practitioners in those fields.

Scroll down to load more…
Quantcast