Get smarter, faster. Subscribe to our daily newsletter.
How NASA is keeping coronavirus off the International Space Station
A mission is planned for just three weeks from now, but NASA has a plan.

Crew health is always important as on this previous ISS mission
- Before liftoff on every mission since 1971, NASA crew members spend two weeks in a "health stabilization" quarantine.
- Other employees of the agency have been given a response framework that tells them where and how to proceed with their duties.
- For upcoming launches, NASA is depending on Russia and SpaceX to step up to the challenge.
There are no respirators in space. As concerned as you may be at the moment about coronavirus following you into your personal quarantine, imagine getting COVID-19 in space, trapped in a vehicle far above the nearest hospital. As the next planned mission to the International Space Station (ISS) on April 9 gets closer, it's reasonable to wonder what can be done to protect astronauts already aboard from the potentially catastrophic arrival of the coronavirus.
As of March 17, NASA has no plans to cancel or postpone this or any other planned missions in the near future. While the situation is continually being reassessed, the agency has a number of measures in place to protect the crews involved.
Taking a picture outside the ISS
Image source: NASA.gov
It's comforting to know that NASA has for some time been careful about allowing germs aloft. Before every mission, dating back to the Apollo 14 launch in 1971, crew members heading for orbit must first spend two weeks in a "health stabilization" quarantine. Prior to its implementation, pre-flight illnesses were a concern and a relatively common occurrence.
Prior to entering the quarantine for the upcoming mission, NASA will be testing crew members for coronavirus infection.
One of the mission's crew is a cosmonaut from Kazakhstan (the location of the launch site). This past weekend, the nation reported its first coronavirus test and then closed its borders to outsiders.
NASA's team will be allowed entry, though the launch personnel roster is being pared down to as few people as possible. Safe travel arrangements are still being assessed. No reporters will be allowed to attend the launch, and the Russian state space corporation, Roscosmos, will take the unusual step of live-streaming the launch, as NASA usually does.
Coming home from the ISS
Soyuz MS-08 landss near the town of Zhezkazgan, Kazakhstan in 2018
Image source: NASA/Bill Ingalls
In the middle of April, a return for some ISS crew members is on the calendar. Expected to land aboard a Soyuz capsule are presumably virus-free Andrew Morgan and Jessica Meir from the U.S, and Russian cosmonaut Oleg Skripochka. The capsule will come down in the Kazhak desert, a type of landing that in normal times requires a large number of recovery personnel to retrieve returning crew. NASA has not yet announced plans to modify this cohort of rescuers.
Earth to Elon
ISS crew inside SpaceDragon capsule on March 9
Image source: NASA.gov
Perhaps the most worrying upcoming mission is the one planned in cooperation with SpaceX and currently scheduled for May. So far, things are proceeding as planned, though SpaceX founder Elon Musk last week sent an alarming email to employees. In it he downplayed the seriousness of coronavirus, arguing that more people die in car crashes. His commentary raises concerns regarding whether or not SpaceX can be relied on to proceed with the requisite level of caution.
The mission is an important one. It's a key step in NASA's Commercial Crew Program, marking the first time a privately-funded vehicle would be transporting people to and from the ISS. SpaceX's Crew Dragon capsule has already paid one visit to the space station, successfully docking on March 9 as shown in the photo above.
Resume countdown
Image source: NASA.gov
As far as NASA's Earth-bound employees go, the agency has a four-stage classification system for how and where to work. The coronavirus response framework (above) covers Central Access, Health & Safety, Meetings & Events, and Travel.
So as of now, NASA's plans for the next three missions remain on-track, with modifications made where possible in response to COVID-19 challenges. Of course, things are changing almost daily, and NASA has made it clear that they plan to continually re-assess their mission plans as events warrant.
- How to deflect an asteroid | MIT News ›
- Can synthetic biology create a better coronavirus vaccine? - Big Think ›
- Innovative tech that will help ease the coronavirus lockdown - Big Think ›
- Crew Dragon launch: How SpaceX went from zero to hero - Big Think ›
There are 5 eras in the universe's lifecycle. Right now, we're in the second era.
Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.
Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft
- We're in the middle, or thereabouts, of the universe's Stelliferous era.
- If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
- Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.
The 5 eras of the universe
<p>There are many ways to consider and discuss the past, present, and future of the universe, but one in particular has caught the fancy of many astronomers. First published in 1999 in their book <a href="https://amzn.to/2wFQLiL" target="_blank"><em>The Five Ages of the Universe: Inside the Physics of Eternity</em></a>, <a href="https://en.wikipedia.org/wiki/Fred_Adams" target="_blank">Fred Adams</a> and <a href="https://en.wikipedia.org/wiki/Gregory_P._Laughlin" target="_blank">Gregory Laughlin</a> divided the universe's life story into five eras:</p><ul><li>Primordial era</li><li>Stellferous era</li><li>Degenerate era</li><li>Black Hole Era</li><li>Dark era</li></ul><p>The book was last updated according to current scientific understandings in 2013.</p><p>It's worth noting that not everyone is a subscriber to the book's structure. Popular astrophysics writer <a href="https://www.forbes.com/sites/ethansiegel/#30921c93683e" target="_blank">Ethan C. Siegel</a>, for example, published an article on <a href="https://www.forbes.com/sites/startswithabang/2019/07/26/we-have-already-entered-the-sixth-and-final-era-of-our-universe/#7072d52d4e5d" target="_blank"><em>Medium</em></a> last June called "We Have Already Entered The Sixth And Final Era Of Our Universe." Nonetheless, many astronomers find the quintet a useful way of discuss such an extraordinarily vast amount of time.</p>The Primordial era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEyMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNjEzMjY1OX0.PRpvAoa99qwsDNprDme9tBWDim6mS7Mjx6IwF60fSN8/img.jpg?width=980" id="db4eb" class="rm-shortcode" data-rm-shortcode-id="0e568b0cc12ed624bb8d7e5ff45882bd" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="1049" />Image source: Sagittarius Production/Shutterstock
<p> This is where the universe begins, though what came before it and where it came from are certainly still up for discussion. It begins at the Big Bang about 13.8 billion years ago. </p><p> For the first little, and we mean <em>very</em> little, bit of time, spacetime and the laws of physics are thought not yet to have existed. That weird, unknowable interval is the <a href="https://www.universeadventure.org/eras/era1-plankepoch.htm" target="_blank">Planck Epoch</a> that lasted for 10<sup>-44</sup> seconds, or 10 million of a trillion of a trillion of a trillionth of a second. Much of what we currently believe about the Planck Epoch eras is theoretical, based largely on a hybrid of general-relativity and quantum theories called quantum gravity. And it's all subject to revision. </p><p> That having been said, within a second after the Big Bang finished Big Banging, inflation began, a sudden ballooning of the universe into 100 trillion trillion times its original size. </p><p> Within minutes, the plasma began cooling, and subatomic particles began to form and stick together. In the 20 minutes after the Big Bang, atoms started forming in the super-hot, fusion-fired universe. Cooling proceeded apace, leaving us with a universe containing mostly 75% hydrogen and 25% helium, similar to that we see in the Sun today. Electrons gobbled up photons, leaving the universe opaque. </p><p> About 380,000 years after the Big Bang, the universe had cooled enough that the first stable atoms capable of surviving began forming. With electrons thus occupied in atoms, photons were released as the background glow that astronomers detect today as cosmic background radiation. </p><p> Inflation is believed to have happened due to the remarkable overall consistency astronomers measure in cosmic background radiation. Astronomer <a href="https://www.youtube.com/watch?v=IGCVTSQw7WU" target="_blank">Phil Plait</a> suggests that inflation was like pulling on a bedsheet, suddenly pulling the universe's energy smooth. The smaller irregularities that survived eventually enlarged, pooling in denser areas of energy that served as seeds for star formation—their gravity pulled in dark matter and matter that eventually coalesced into the first stars. </p>The Stelliferous era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEzNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxMjA0OTcwMn0.GVCCFbBSsPdA1kciHivFfWlegOfKfXUfEtFKEF3otQg/img.jpg?width=980" id="bc650" class="rm-shortcode" data-rm-shortcode-id="c8f86bf160ecdea6b330f818447393cd" data-rm-shortcode-name="rebelmouse-image" data-width="481" data-height="720" />Image source: Casey Horner/unsplash
<p>The era we know, the age of stars, in which most matter existing in the universe takes the form of stars and galaxies during this active period. </p><p>A star is formed when a gas pocket becomes denser and denser until it, and matter nearby, collapse in on itself, producing enough heat to trigger nuclear fusion in its core, the source of most of the universe's energy now. The first stars were immense, eventually exploding as supernovas, forming many more, smaller stars. These coalesced, thanks to gravity, into galaxies.</p><p>One axiom of the Stelliferous era is that the bigger the star, the more quickly it burns through its energy, and then dies, typically in just a couple of million years. Smaller stars that consume energy more slowly stay active longer. In any event, stars — and galaxies — are coming and going all the time in this era, burning out and colliding.</p><p>Scientists predict that our Milky Way galaxy, for example, will crash into and combine with the neighboring Andromeda galaxy in about 4 billion years to form a new one astronomers are calling the Milkomeda galaxy.</p><p>Our solar system may actually survive that merger, amazingly, but don't get too complacent. About a billion years later, the Sun will start running out of hydrogen and begin enlarging into its red giant phase, eventually subsuming Earth and its companions, before shrining down to a white dwarf star.</p>The Degenerate era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE1MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNTk3NDQyN30.gy4__ALBQrdbdm-byW5gQoaGNvFTuxP5KLYxEMBImNc/img.jpg?width=980" id="77f72" class="rm-shortcode" data-rm-shortcode-id="08bb56ea9fde2cee02d63ed472d79ca3" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Diego Barucco/Shutterstock/Big Think
<p>Next up is the Degenerate era, which will begin about 1 quintillion years after the Big Bang, and last until 1 duodecillion after it. This is the period during which the remains of stars we see today will dominate the universe. Were we to look up — we'll assuredly be outta here long before then — we'd see a much darker sky with just a handful of dim pinpoints of light remaining: <a href="https://earthsky.org/space/evaporating-giant-exoplanet-white-dwarf-star" target="_blank">white dwarfs</a>, <a href="https://earthsky.org/space/new-observations-where-stars-end-and-brown-dwarfs-begin" target="_blank">brown dwarfs</a>, and <a href="https://earthsky.org/astronomy-essentials/definition-what-is-a-neutron-star" target="_blank">neutron stars</a>. These"degenerate stars" are much cooler and less light-emitting than what we see up there now. Occasionally, star corpses will pair off into orbital death spirals that result in a brief flash of energy as they collide, and their combined mass may become low-wattage stars that will last for a little while in cosmic-timescale terms. But mostly the skies will be be bereft of light in the visible spectrum.</p><p>During this era, small brown dwarfs will wind up holding most of the available hydrogen, and black holes will grow and grow and grow, fed on stellar remains. With so little hydrogen around for the formation of new stars, the universe will grow duller and duller, colder and colder.</p><p>And then the protons, having been around since the beginning of the universe will start dying off, dissolving matter, leaving behind a universe of subatomic particles, unclaimed radiation…and black holes.</p>The Black Hole era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE2MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMjE0OTQ2MX0.ifwOQJgU0uItiSRg9z8IxFD9jmfXlfrw6Jc1y-22FuQ/img.jpg?width=980" id="103ea" class="rm-shortcode" data-rm-shortcode-id="f0e6a71dacf95ee780dd7a1eadde288d" data-rm-shortcode-name="rebelmouse-image" data-width="1400" data-height="787" />Image source: Vadim Sadovski/Shutterstock/Big Think
<p> For a considerable length of time, black holes will dominate the universe, pulling in what mass and energy still remain. </p><p> Eventually, though, black holes evaporate, albeit super-slowly, leaking small bits of their contents as they do. Plait estimates that a small black hole 50 times the mass of the sun would take about 10<sup>68</sup> years to dissipate. A massive one? A 1 followed by 92 zeros. </p><p> When a black hole finally drips to its last drop, a small pop of light occurs letting out some of the only remaining energy in the universe. At that point, at 10<sup>92</sup>, the universe will be pretty much history, containing only low-energy, very weak subatomic particles and photons. </p>The Dark Era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE5NC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0Mzg5OTEyMH0.AwiPRGJlGIcQjjSoRLi6V3g5klRYtxQJIpHFgZdZkuo/img.jpg?width=980" id="60c77" class="rm-shortcode" data-rm-shortcode-id="7a857fb7f0d85cf4a248dbb3350a6e1c" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Big Think
<p>We can sum this up pretty easily. Lights out. Forever.</p>Dark energy: The apocalyptic wild card of the universe
Dr. Katie Mack explains what dark energy is and two ways it could one day destroy the universe.
- The universe is expanding faster and faster. Whether this acceleration will end in a Big Rip or will reverse and contract into a Big Crunch is not yet understood, and neither is the invisible force causing that expansion: dark energy.
- Physicist Dr. Katie Mack explains the difference between dark matter, dark energy, and phantom dark energy, and shares what scientists think the mysterious force is, its effect on space, and how, billions of years from now, it could cause peak cosmic destruction.
- The Big Rip seems more probable than a Big Crunch at this point in time, but scientists still have much to learn before they can determine the ultimate fate of the universe. "If we figure out what [dark energy is] doing, if we figure out what it's made of, how it's going to change in the future, then we will have a much better idea for how the universe will end," says Mack.
Astrophysicists find unique "hot Jupiter" planet without clouds
A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.
Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.
- Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
- Such planets were formed differently from others and offer unique research opportunities.
- Only one other such exoplanet was found previously.
Munazza Alam – a graduate student at the Center for Astrophysics | Harvard & Smithsonian.
Credit: Jackie Faherty
Jupiter's Colorful Cloud Bands Studied by Spacecraft
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8a72dfe5b407b584cf867852c36211dc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/GzUzCesfVuw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Five collectibles with better returns than the stock market
People often make a killing in stocks, but there are other ways to potentially turn major profits.
