Time is actually slowing down and will come to a halt, says a radical theory

A theory proposes that the universe is not speeding up in its expansion but that time is actually slowing down.


If you think about it, time can really weird you out. What is it exactly? How do we know it is even real and not a concoction of our brain? We certainly have a use for it, and it pretty much runs our lives on a daily basis. We constantly check the time, we make appointments based on it, we judge the courses of our lives based on the seeming fact that certain events happen to us at one point in time and not another. And we don’t know how to get back to the time that’s already passed us by. But as Einstein showed in the beginning of 20th century, we don’t really understand all that well how time works. It doesn’t seem to work the same way throughout our universe and depends on who is observing it.  

One team of scientists looked at time from a different perspective. They considered the fact that the universe appears to be speeding up in its expansion and wondered - what if that’s not really happening either? What if instead, time is actually slowing down. And not only that - one day it may come to a complete halt.

The idea came to Professor Jose Senovilla and colleagues Marc Mars and Raul Vera of the University of the Basque Country, Bilbao, and University of Salamanca. They thought that rather than supernovae moving away from us, indicating that the universe’s expansion is speeding up - we are not actually getting farther from anything, but time is slowing down so the light is taking longer to reach us. There is no mysterious dark energy under their theory, either. 

“We do not say that the expansion of the universe itself is an illusion,” said the scientists in an interview. “What we say may be an illusion is the acceleration of this expansion - that is, the possibility that the expansion is, and has been, increasing its rate.”

What will happen once time stops altogether, perhaps in billions of years from now? "Then everything will be frozen, like a snapshot of one instant, for ever,” explained Senovilla.

More specifically, in the paper that they published, the scientists propose a theory that sees our universe being inside a multidimensional “brane” that floats through a higher dimension of space. Time, under this theory, is the fourth dimension that is slowly degrading into a new spatial dimension. 

In an interview with New Scientist, Senovilla expanded on how they arrived at their thinking:

“The theory bases it’s idea on one particular variant of superstring theory, in which our universe is confined to the surface of a membrane, or brane, floating in a higher-dimensional space, known as the “bulk”. In billions of years, time would cease to be time altogether.” Senovilla told to New Scientist, adding “Our planet will be long gone by then.”

One additional argument in favor of this hypothesis was voiced by Gary Gibbons, a cosmologist at Cambridge University. He wondered - if time started with the Big Bang, who is to say it can’t stop?

"We believe that time emerged during the Big Bang, and if time can emerge, it can also disappear – that's just the reverse effect,” said Gibbons.

Here’s where you can read the Spanish study, published in Physical Review D. 

And if you're wondering, here's how Neil deGrasse Tyson explains time:

Big Think Edge
  • The meaning of the word 'confidence' seems obvious. But it's not the same as self-esteem.
  • Confidence isn't just a feeling on your inside. It comes from taking action in the world.
  • Join Big Think Edge today and learn how to achieve more confidence when and where it really matters.
Videos
  • Prejudice is typically perpetrated against 'the other', i.e. a group outside our own.
  • But ageism is prejudice against ourselves — at least, the people we will (hopefully!) become.
  • Different generations needs to cooperate now more than ever to solve global problems.


Yale scientists restore brain function to 32 clinically dead pigs

Researchers hope the technology will further our understanding of the brain, but lawmakers may not be ready for the ethical challenges.

Still from John Stephenson's 1999 rendition of Animal Farm.
Surprising Science
  • Researchers at the Yale School of Medicine successfully restored some functions to pig brains that had been dead for hours.
  • They hope the technology will advance our understanding of the brain, potentially developing new treatments for debilitating diseases and disorders.
  • The research raises many ethical questions and puts to the test our current understanding of death.

The image of an undead brain coming back to live again is the stuff of science fiction. Not just any science fiction, specifically B-grade sci fi. What instantly springs to mind is the black-and-white horrors of films like Fiend Without a Face. Bad acting. Plastic monstrosities. Visible strings. And a spinal cord that, for some reason, is also a tentacle?

But like any good science fiction, it's only a matter of time before some manner of it seeps into our reality. This week's Nature published the findings of researchers who managed to restore function to pigs' brains that were clinically dead. At least, what we once thought of as dead.

What's dead may never die, it seems

The researchers did not hail from House Greyjoy — "What is dead may never die" — but came largely from the Yale School of Medicine. They connected 32 pig brains to a system called BrainEx. BrainEx is an artificial perfusion system — that is, a system that takes over the functions normally regulated by the organ. The pigs had been killed four hours earlier at a U.S. Department of Agriculture slaughterhouse; their brains completely removed from the skulls.

BrainEx pumped an experiment solution into the brain that essentially mimic blood flow. It brought oxygen and nutrients to the tissues, giving brain cells the resources to begin many normal functions. The cells began consuming and metabolizing sugars. The brains' immune systems kicked in. Neuron samples could carry an electrical signal. Some brain cells even responded to drugs.

The researchers have managed to keep some brains alive for up to 36 hours, and currently do not know if BrainEx can have sustained the brains longer. "It is conceivable we are just preventing the inevitable, and the brain won't be able to recover," said Nenad Sestan, Yale neuroscientist and the lead researcher.

As a control, other brains received either a fake solution or no solution at all. None revived brain activity and deteriorated as normal.

The researchers hope the technology can enhance our ability to study the brain and its cellular functions. One of the main avenues of such studies would be brain disorders and diseases. This could point the way to developing new of treatments for the likes of brain injuries, Alzheimer's, Huntington's, and neurodegenerative conditions.

"This is an extraordinary and very promising breakthrough for neuroscience. It immediately offers a much better model for studying the human brain, which is extraordinarily important, given the vast amount of human suffering from diseases of the mind [and] brain," Nita Farahany, the bioethicists at the Duke University School of Law who wrote the study's commentary, told National Geographic.

An ethical gray matter

Before anyone gets an Island of Dr. Moreau vibe, it's worth noting that the brains did not approach neural activity anywhere near consciousness.

The BrainEx solution contained chemicals that prevented neurons from firing. To be extra cautious, the researchers also monitored the brains for any such activity and were prepared to administer an anesthetic should they have seen signs of consciousness.

Even so, the research signals a massive debate to come regarding medical ethics and our definition of death.

Most countries define death, clinically speaking, as the irreversible loss of brain or circulatory function. This definition was already at odds with some folk- and value-centric understandings, but where do we go if it becomes possible to reverse clinical death with artificial perfusion?

"This is wild," Jonathan Moreno, a bioethicist at the University of Pennsylvania, told the New York Times. "If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one."

One possible consequence involves organ donations. Some European countries require emergency responders to use a process that preserves organs when they cannot resuscitate a person. They continue to pump blood throughout the body, but use a "thoracic aortic occlusion balloon" to prevent that blood from reaching the brain.

The system is already controversial because it raises concerns about what caused the patient's death. But what happens when brain death becomes readily reversible? Stuart Younger, a bioethicist at Case Western Reserve University, told Nature that if BrainEx were to become widely available, it could shrink the pool of eligible donors.

"There's a potential conflict here between the interests of potential donors — who might not even be donors — and people who are waiting for organs," he said.

It will be a while before such experiments go anywhere near human subjects. A more immediate ethical question relates to how such experiments harm animal subjects.

Ethical review boards evaluate research protocols and can reject any that causes undue pain, suffering, or distress. Since dead animals feel no pain, suffer no trauma, they are typically approved as subjects. But how do such boards make a judgement regarding the suffering of a "cellularly active" brain? The distress of a partially alive brain?

The dilemma is unprecedented.

Setting new boundaries

Another science fiction story that comes to mind when discussing this story is, of course, Frankenstein. As Farahany told National Geographic: "It is definitely has [sic] a good science-fiction element to it, and it is restoring cellular function where we previously thought impossible. But to have Frankenstein, you need some degree of consciousness, some 'there' there. [The researchers] did not recover any form of consciousness in this study, and it is still unclear if we ever could. But we are one step closer to that possibility."

She's right. The researchers undertook their research for the betterment of humanity, and we may one day reap some unimaginable medical benefits from it. The ethical questions, however, remain as unsettling as the stories they remind us of.

Scientists see 'rarest event ever recorded' in search for dark matter

The team caught a glimpse of a process that takes 18,000,000,000,000,000,000,000 years.

Image source: Pixabay
Surprising Science
  • In Italy, a team of scientists is using a highly sophisticated detector to hunt for dark matter.
  • The team observed an ultra-rare particle interaction that reveals the half-life of a xenon-124 atom to be 18 sextillion years.
  • The half-life of a process is how long it takes for half of the radioactive nuclei present in a sample to decay.
Keep reading Show less