Scientists Create a Bizarre Superfluid with "Negative Mass"

Scientists create a superfluid with negative mass that accelerates backwards.


Scientists at Washington State University created a fluid with the previously-theorized (and rather counterintuitive) property of negative mass.

This is the first time a negative mass has ever been observed under laboratory conditions and can lead to advancements in our understanding of such hard-to-study topics as black holes, dark matter and neutron stars.

What's unusual about the created fluid is that when you push on it, it doesn't accelerate in the direction where it was pushed, as you would expect. Instead, it accelerates back, towards you. Scientists have previously hypothesized matter could have negative mass the way a particle can have a negative charge. But they have not been able to show it definitively until this study.

“What’s a first here is the exquisite control we have over the nature of this negative mass, without any other complications,” said Michael Forbes, professor of physics and astronomy at WSU and the study’s co-author.

Credit: shock.wsu.edu

Forbes and the team led by WSU professor Peter Engels used lasers create the conditions for observing negative mass. First, they cooled rubidium atoms to nearly absolute zero. In the resulting state, known as a Bose-Einstein condensate, particles move super slowly, behaving like waves according to the principles of quantum mechanics. What also happens is that particles form what’s called a “superfluid”, moving in unison without loss of energy. 

The scientists then used lasers to change the spin of the atoms in the fluid, making them behave like they had negative mass.

“Once you push, it accelerates backwards,” said Forbes. “It looks like the rubidium hits an invisible wall.”

Some scientists have pointed out that what’s created here is “negative effective mass,” with Sabine Hossenfelder of the Frankfurt Institute for Advanced Studies explaining the difference this way:

“Physicists use the preamble ‘effective’ to indicate something that is not fundamental but emergent, and the exact definition of such a term is often a matter of convention. The ‘effective radius’ of a galaxy, for example, is not its radius. The ‘effective nuclear charge’ is not the charge of the nucleus. And the ‘effective negative mass’ – you guessed it – is not a negative mass. The effective mass is merely a handy mathematical quantity to describe the condensate’s behavior,” Hossenfelder said on her blog.

Regardless of the wording, researchers agree that this is a significant advancement in experiments involving supercooling atoms and pave the way for studying complex cosmic phenomena. 

You can read the study here, in the journal Physical Review Letters.

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

The real numbers behind abortions in the United States

How many abortions are actually performed? Numbers reveal the complexity in the raging debate.

Getty Images.
Politics & Current Affairs
  • The American society is close to split on the legality of abortions.
  • 45,789,558 abortions were carried out in the U.S. between 1970 and 2015.
  • The abortion numbers are at an all-time low now, trending almost half of what they were.
Keep reading Show less

7 most valuable college majors for the future

The most valuable college majors will prepare students for a world right out a science fiction novel.

Harvard University
Technology & Innovation
  • The future of work is going to require a range of skills learned that take into account cutting edge advancements in technology and science.
  • The most valuable college majors in the future will prepare students for new economies and areas of commerce.
  • Mathematics, engineering and science related educational majors will become an ubiqitous feature of the new job market.
Keep reading Show less

Cheers! How the physics of fizz contributes to human happiness

The phenomenon that makes our favourite drinks bubbly is, alarmingly, the same one that causes decompression sickness in divers. Why do we still love it?

Surprising Science

Think of the last time you had something to celebrate. If you toasted the happy occasion, your drink was probably alcoholic – and bubbly.

Keep reading Show less