Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

From Living Inside Asteroids to Solar Arks, a Scientist Designs the Space Colonies of the Future

New research explains how to build different types of outposts in space.

The space colony Island 3 by Gerard K. O’Neill (1975).

The next several decades are likely to be revolutionary in humanity’s relationship with space. Instead of just the select few astronauts, a much larger portion of the planet’s population, perhaps hundreds of thousands, could start traveling into the cosmos. They would go on long journeys to faraway planets like Mars, staff the first colonies on the moon and beyond, become asteroid miners and engage in many other professions that will be necessary as we explore this new frontier. But what will these first outposts in space look like and how will they work? 


A new study on the future of space stations and space colonies was recently published in the journal Reach, a publication focused on human space exploration. The paper was written by Werner Grandl, an Austrian architect and civil engineer, who has been researching and publishing studies on space colonies and space stations since 1986.

Grandl provides a clear imperative for the humans to go to space, calling planet Earth "just the cradle of mankind.” According to Grandl, if we want to survive as a species, we need to “stretch the concept of nature beyond the biosphere” and understand “cosmic evolution”. And within that larger cosmic view, there is no reason to stay put on Earth, with all its dangers and scarcities.

The first place we should go? You guessed it - the moon.

Grandl thinks that humans will return to the moon in the 2020s, building a lunar base on and below the surface. The purpose of the outpost would be both for research and for learning to utilize the moon’s resources. Helium-3 (a rare isotope of helium), iron, aluminum, titanium and more can be extracted from lunar materials. Farther down the line, the moon base would produce fuel for spaceships on their way to intergalactic destinations. 

Initial modular lunar base. The figure shows the initial stage of six modules with one additional module (to the left). Credit: Werner Grandl.

The initial lunar base would consist of 6 cylindrical modules made of lightweight aluminum, 17 meters long and 6 meters in diameter. One module would house 8 people. The modules would each have different functions in the base - one would would be dedicated to generating energy and communications. There would also be modules for a central gathering area, an airlock, laboratory, living quarters with private rooms for each person, and a spare module for enlarging the base. 

Urban structure on the Moon, built of standardized modules (Grandl, 2010) 

Another possibility for a lunar base location and design - put it into an underground “lava tube” - a natural cave under the surface, for example into the Mare Tranquilitatis Hole (MTH). Advantages of an underground base can be numerous, from providing water within their soil, to reducing the effects of cosmic rays and offering better temperature conditions. 

‘Green” habitat for 100 inhabitants inside Mare Tranquilitatis Hole (Grandl and Böck 2015). 

Grandl envisions that another place where humans might eventually find themselves would be in colonies dedicated to mining asteroids. Near Earth Asteroids could provide rare-earth elements and metals like platinum, which would be easier to extract than on Earth, without worrying about environmental pollution or politics. One kind of colony that would spring up to support this mining would be a manned space station connected to the asteroid. The station would have all the necessary equipment and staff for the mining process. 

Once a particular asteroid has been tapped out, if it’s larger than 400m in diameter, its hollowed-out insides could be big enough to support a rotating human colony of more than 2,000 inhabitants. Water, oxygen and building materials would be extracted from the asteroid itself. 

Prototype asteroid colony. Credit: Werner Grandl.

The premiere space colony envisioned by Grandl and his team is the Solar Ark. It would be cylindrical in shape and have artificial gravity. This idea of needing to create gravity was actually first proposed by the Russian scientist Konstantin Tsiolkovskyone of the founding fathers of rocketry and astronautics, who was also the first to advocate creating large colonies around Earth.

Why would we need artificial gravity? The lack of gravity in space can be dangerous to human health, with such issues as bone demineralization and atrophying of muscles. In order to avoid these negative effects, gravity could potentially be simulated in space by employing “centrifugal forces.” According to calculations by the NASA engineer Jesco von Puttkamer, a space station that’s 50 meters in radius and rotates at the spin rate of 4.2 rpm would create an artificial gravity of 1G.


Illumination of a Solar Ark. Credit: Grandl

The Solar Ark would be one such massive colony that could range in length from 2.3 km to 8km, with its diameter ranging from 900 m to 3.2 km. The larger colony could be home to up to 250,000 inhabitants.

The Ark would also feature an artificial climate, and would be illuminated by capturing sunlight via a system of parabolic mirrors (hence its name Solar Ark). Its hull would be covered by an outer and inner aluminum "membrane", with external thrusters adjusting the rotation and direction of the colony. The outer membrane would also be shielded by layers of foamglass with little thermal conductivity, protecting against meteorites and radiation.

A free-floating structure near the colony would protect it from solar flares.

How far in the future are these plans? Most technologies needed to make such ideas a reality, other than artificial gravity, are already available, says Grandl. 

LIVE EVENT | Radical innovation: Unlocking the future of human invention

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Big Think LIVE

Add event to calendar

AppleGoogleOffice 365OutlookOutlook.comYahoo


Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Unfiltered lessons of a female entrepreneur

Join Pulitzer Prize-winning reporter and best-selling author Charles Duhigg as he interviews Victoria Montgomery Brown, co-founder and CEO of Big Think.

Big Think LIVE

Women today are founding more businesses than ever. In 2018, they made up 40% of new entrepreneurs, yet in that same year, they received just 2.2% of all venture capital investment. The playing field is off-balance. So what can women do?

Keep reading Show less

Why ‘Christian nationalists’ are less likely to wear masks and social distance

In a recent study, researchers examined how Christian nationalism is affecting the U.S. response to the COVID-19 pandemic.

A Catholic priest wearing a facemask and face shield blesses a hospital on August 6, 2020 in Manila, Philippines

Ezra Acayan/Getty Images
Coronavirus
  • A new study used survey data to examine the interplay between Christian nationalism and incautious behaviors during the COVID-19 pandemic.
  • The researchers defined Christian nationalism as "an ideology that idealizes and advocates a fusion of American civic life with a particular type of Christian identity and culture."
  • The results showed that Christian nationalism was the leading predictor that Americans engaged in incautious behavior.
Keep reading Show less
Sex & Relationships

Two-thirds of parents say technology makes parenting harder

Parental anxieties stem from the complex relationship between technology, child development, and the internet's trove of unseemly content.

Scroll down to load more…
Quantcast