Big ideas.
Once a week.
Subscribe to our weekly newsletter.
What really happens in your body and brain when you orgasm?
You may be surprised at how your body and brain react to this type of pleasure.

Do you know what happens in the body and brain during orgasm?
- An orgasm is described as a feeling of intense pleasure that happens during sexual activity.
- By studying the brain activity of people experiencing orgasms, researchers have been able to pinpoint some of the key changes that occur.
- These changes include heightened sensitivity to areas of the brain that control how we feel pain, making us less sensitive to it.
An orgasm is described as a feeling of intense pleasure that happens during sexual activity. While some people experience orgasms differently than others, there are some key changes that occur in the mind and body.
By studying the brain activity of people experiencing orgasms, researchers have been able to pinpoint some of these key changes that occur. Using fMRI machines (functional magnetic resonance imaging) or PET scans (positron emission tomography), they were able to measure blood flow and neuron activity inside the brain during climax.
What really happens in the brain during orgasm?
The hypothalamus, which plays a key role in releasing hormones like dopamine and oxytocin, is one of the regions of the brain that lights up during orgasm.
Image by SciePro on Shutterstock
Does the "logical" part of your brain shut down? That's hotly debated.
There may be a reason why you feel bold and uninhibited during your climax.
"The lateral orbitofrontal cortex becomes less active during sex. This is the part of the brain that is responsible for reason, decision making, and value judgments. The deactivation of this part of the brain is also associated with decreases in fear and anxiety," explains clinical psychologist Daniel Sher.
However, not all experts in the field agree with this widely publicized study's findings. Recent (2017) research suggests otherwise, with results that show that these areas of the brain did not deactivate within the 10 female participants of this study.
Parts of your brain associated with memories, touch, and movement may light up.
Research has found that the hypothalamus, thalamus, and substantia nigra may light up during orgasm. "Dirty Minds: How Our Brains Influence Love, Sex and Relationships" author Kayt Sukel was interviewed for her work alongside researchers who studied the effect of an orgasm on the brain while she was in an MRI machine.
The thalamus helps integrate information about touch, movement, and sexual memories/fantasies. This could explain how you call upon sexual memories and fantasies (or why your imagination is able to be more active) during sexual arousal and peak.
Oxytocin builds up and is released.
Oxytocin is defined as a "bonding" hormone. The forming of oxytocin during sex happens in the pituitary glands and it is then released in the hypothalamus. The hypothalamus plays a key role in many important functions including the releasing of other hormones (like dopamine), regulation of body temperature, controlling of appetite, and of course, the management of sexual behaviors.
A surge of dopamine is released.
During orgasm, your brain works hard to produce various hormones, like the aforementioned oxytocin. In that cocktail of hormones is dopamine, which is released at the moment of orgasm. Dopamine is responsible for feelings of pleasure and desire and therefore acts as a motivation to keep experiencing those feelings of pleasure and desire.
Dopamine is formed in the part of the brain that receives information from several other areas in order to define if your needs (specifically your human needs) are being satisfied.
The release of endorphins, oxytocin, and vasopressin make you less sensitive to pain during sex.
For many, pain and sex go hand in hand. Many people enjoy a little bit of pain during sex, and there is actually a very good reason for this: you're less susceptible to pain during sex. The pituitary gland is activated during sex, which then frees your brain up to release all kinds of endorphins that are able to promote pain reduction.
An interesting thing to note is that some of the same areas of the brain that are active during sex are also active when you experience pain. A very interesting 1985 study looked at the correlation between vaginal stimulation and the elevation of pain.
In people who are unable to feel genital stimulation, the brain may actually be able to "remap" itself.
People who have suffered lower-body paralysis can still achieve orgasm through stimulation of other body parts such as the nipples. In this case, the brain actually creates new pathways to pleasure that doesn't involve our genitalia. This Seattle Times article details paralyzed women who were able to rediscover their ability to orgasm through various other sensations.
Having orgasms can keep your brain healthy.
Because there is a significant increase in blood flow across multiple areas of the brain so dramatically when we achieve orgasm, it's entirely likely that orgasms may have developed in part to keep our brains healthy.
What really happens in the body when you orgasm?
What really happens in the body when we orgasm?
Photo by NATNN on Shutterstock
Your body swells and becomes more sensitive.
While men experience the obvious swelling in the genitals due to increased blood flow, women can experience some forms of swelling during sex as well. From your breasts to your vulva, many women experience swelling during sexual arousal and release.
Your heart rate quickens, which leads to euphoria.
Of course, your heart rate elevates when you're experiencing orgasm, but along with that, you also experience a blood pressure rise and your breathing rate also increases. Both of these things are considered mild aerobic activity responses and could factor into the kind of euphoria you feel during sexual experiences - similar to a "runners high."
Muscles in the vagina, anus, and uterus contract and release - like a workout.
Not only is your pulse racing, but you may also be working out some of the muscles in your body (aside from the ones you're using to physically have sex).
According to Bustle, "Increased blood flow to the genitals during orgasm also maintains the integrity of the smooth muscle that lines the vagina, rectum and connective tissue between the penile shaft and scrotum."
Orgasms may improve allergy symptoms or clear blocked nasal passages.
"Orgasms can be effective at opening blocked nasal passages and can alleviate some allergy and congestion symptoms," according to sexologist and clinical professional counselor Dr. Laura Deitsch.
- What happens in our bodies during sex - Big Think ›
- This Is Your Brain During Orgasm - Big Think ›
- Changes in the brain during sex are slightly different in women than ... ›
Your body’s full of stuff you no longer need. Here's a list.
Evolution doesn't clean up after itself very well.
- An evolutionary biologist got people swapping ideas about our lingering vestigia.
- Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
- Here are the six traits that inaugurated the fun.
The plica semilunaris
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwMS9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY3NDg5NTg1NX0.kdBYMvaEzvCiJjcLEPgnjII_KVtT9RMEwJFuXB68D8Q/img.png?width=980" id="59914" width="429" height="350" data-rm-shortcode-id="b11e4be64c5e1f58bf4417d8548bedc7" data-rm-shortcode-name="rebelmouse-image" />The human eye in alarming detail. Image source: Henry Gray / Wikimedia commons
<p>At the inner corner of our eyes, closest to the nasal ridge, is that little pink thing, which is probably what most of us call it, called the caruncula. Next to it is the plica semilunairs, and it's what's left of a third eyelid that used to — ready for this? — blink horizontally. It's supposed to have offered protection for our eyes, and some birds, reptiles, and fish have such a thing.</p>Palmaris longus
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMzQ1NjUwMn0.dVor41tO_NeLkGY9Tx46SwqhSVaA8HZQmQAp532xLxA/img.jpg?width=980" id="879be" width="1920" height="2560" data-rm-shortcode-id="4089a32ea9fbb1a0281db14332583ccd" data-rm-shortcode-name="rebelmouse-image" />Palmaris longus muscle. Image source: Wikimedia commons
<p> We don't have much need these days, at least most of us, to navigate from tree branch to tree branch. Still, about 86 percent of us still have the wrist muscle that used to help us do it. To see if you have it, place the back of you hand on a flat surface and touch your thumb to your pinkie. If you have a muscle that becomes visible in your wrist, that's the palmaris longus. If you don't, consider yourself more evolved (just joking).</p>Darwin's tubercle
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgxMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0ODUyNjA1MX0.8RuU-OSRf92wQpaPPJtvFreOVvicEwn39_jnbegiUOk/img.jpg?width=980" id="687a0" width="819" height="1072" data-rm-shortcode-id="ff5edf0a698e0681d11efde1d7872958" data-rm-shortcode-name="rebelmouse-image" />Darwin's tubercle. Image source: Wikimedia commons
<p> Yes, maybe the shell of you ear does feel like a dried apricot. Maybe not. But there's a ridge in that swirly structure that's a muscle which allowed us, at one point, to move our ears in the direction of interesting sounds. These days, we just turn our heads, but there it is.</p>Goosebumps
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNzEyNTc2Nn0.aVMa5fsKgiabW5vkr7BOvm2pmNKbLJF_50bwvd4aRo4/img.jpg?width=980" id="d8420" width="1440" height="960" data-rm-shortcode-id="8827e55511c8c3aed8c36d21b6541dbd" data-rm-shortcode-name="rebelmouse-image" />Goosebumps. Photo credit: Tyler Olson via Shutterstock
<p>It's not entirely clear what purpose made goosebumps worth retaining evolutionarily, but there are two circumstances in which they appear: fear and cold. For fear, they may have been a way of making body hair stand up so we'd appear larger to predators, much the way a cat's tail puffs up — numerous creatures exaggerate their size when threatened. In the cold, they may have trapped additional heat for warmth.</p>Tailbone
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY3MzQwMjc3N30.nBGAfc_O9sgyK_lOUo_MHzP1vK-9kJpohLlj9ax1P8s/img.jpg?width=980" id="9a2f6" width="1440" height="1440" data-rm-shortcode-id="4fe28368d2ed6a91a4c928d4254cc02a" data-rm-shortcode-name="rebelmouse-image" />Coccyx.
Image source: Decade3d-anatomy online via Shutterstock
<p>Way back, we had tails that probably helped us balance upright, and was useful moving through trees. We still have the stump of one when we're embryos, from 4–6 weeks, and then the body mostly dissolves it during Weeks 6–8. What's left is the coccyx.</p>The palmar grasp reflex
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMyMC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjY0MDY5NX0.OSwReKLmNZkbAS12-AvRaxgCM7zyukjQUaG4vmhxTtM/img.jpg?width=980" id="8804c" width="1440" height="960" data-rm-shortcode-id="67542ee1c5a85807b0a7e63399e44575" data-rm-shortcode-name="rebelmouse-image" />Palmar reflex activated! Photo credit: Raul Luna on Flickr
<p> You've probably seen how non-human primate babies grab onto their parents' hands to be carried around. We used to do this, too. So still, if you touch your finger to a baby's palm, or if you touch the sole of their foot, the palmar grasp reflex will cause the hand or foot to try and close around your finger.</p>Other people's suggestions
<p>Amir's followers dove right in, offering both cool and questionable additions to her list. </p>Fangs?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Lower mouth plate behind your teeth. Some have protruding bone under the skin which is a throw back to large fangs. Almost like an upsidedown Sabre Tooth.</p>— neil crud (@neilcrud66) <a href="https://twitter.com/neilcrud66/status/1085606005000601600?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hiccups
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sure: <a href="https://t.co/DjMZB1XidG">https://t.co/DjMZB1XidG</a></p>— Stephen Roughley (@SteBobRoughley) <a href="https://twitter.com/SteBobRoughley/status/1085529239556968448?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hypnic jerk as you fall asleep
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">What about when you “jump” just as you’re drifting off to sleep, I heard that was a reflex to prevent falling from heights.</p>— Bann face (@thebanns) <a href="https://twitter.com/thebanns/status/1085554171879788545?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> <p> This thing, often called the "alpha jerk" as you drop into alpha sleep, is properly called the hypnic jerk,. It may actually be a carryover from our arboreal days. The <a href="https://www.livescience.com/39225-why-people-twitch-falling-asleep.html" target="_blank" data-vivaldi-spatnav-clickable="1">hypothesis</a> is that you suddenly jerk awake to avoid falling out of your tree.</p>Nails screeching on a blackboard response?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Everyone hate the sound of fingernails on a blackboard. It's _speculated_ that this is a vestigial wiring in our head, because the sound is similar to the shrill warning call of a chimp. <a href="https://t.co/ReyZBy6XNN">https://t.co/ReyZBy6XNN</a></p>— Pet Rock (@eclogiter) <a href="https://twitter.com/eclogiter/status/1085587006258888706?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Ear hair
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Ok what is Hair in the ears for? I think cuz as we get older it filters out the BS.</p>— Sarah21 (@mimix3) <a href="https://twitter.com/mimix3/status/1085684393593561088?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Nervous laughter
<blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">You may be onto something. Tooth-bearing with the jaw clenched is generally recognized as a signal of submission or non-threatening in primates. Involuntary smiling or laughing in tense situations might have signaled that you weren’t a threat.</p>— Jager Tusk (@JagerTusk) <a href="https://twitter.com/JagerTusk/status/1085316201104912384?ref_src=twsrc%5Etfw">January 15, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Um, yipes.
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sometimes it feels like my big toe should be on the side of my foot, was that ever a thing?</p>— B033? K@($ (@whimbrel17) <a href="https://twitter.com/whimbrel17/status/1085559016011563009?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Godzilla vs. Kong: A morphologist chooses the real winner
Ultimately, this is a fight between a giant reptile and a giant primate.
The 2021 film “Godzilla vs. Kong" pits the two most iconic movie monsters of all time against each other. And fans are now picking sides.
How do you tell reality from a deepfake?
The more you see them, the better you get at spotting the signs.
Ancient cave artists were getting high on hypoxia
A new study says the reason cave paintings are in such remote caverns was the artists' search for transcendence.
