Can you solve what an MIT professor once called 'the hardest logic puzzle ever'?

Logic puzzles can teach reasoning in a fun way that doesn't feel like work.

neurons firing in brain
Credit: Shutterstock
  • Logician Raymond Smullyan devised tons of logic puzzles, but one was declared by another philosopher to be the hardest of all time.
  • The problem, also known as the Three Gods Problem, is solvable, even if it doesn't seem to be.
  • It depends on using complex questions to assure that any answer given is useful.

Despite the general dislike of mathematics that most profess to have, many people enjoy logic puzzles. This is strange, as many logic puzzles are just variations of math problems. Gleefully ignorant of this fact, many mathaphobes will try to solve riddles and puzzles of tremendous difficulty using reasoning tools they fear to employ when the subject is an equation.

Today, we'll look at a puzzle, the polymath who devised it, and why you should consider picking up a book of logical puzzles next time you are at the library.

This puzzle was written by the brilliant logician Raymond Smullyan. Born in New York 101 years ago, Smullyan earned his undergraduate degree at the University of Chicago and his doctorate in mathematics at Princeton, where he also taught for a few years.

An extremely prolific writer, he published several books on logic puzzles for popular consumption and an endless stream of textbooks and essays for an academic audience on logic. His puzzle books are well regarded for introducing people to complex philosophical ideas, such as Gödel's incompleteness theorems, in a fun and non-technical way.

Skilled in close-up magic, Smullyan once worked as a professional magician. He was also an accomplished pianist and an amateur astronomer who built his own telescope. Besides his interest in logic, he also admired Taoist philosophy and published a book on it for a general audience.

He also found the time to appear on Johnny Carson, where, as in many of his books, he argued that people who like his puzzles claim to dislike math only because they don't realize that they are one and the same.

The Three Gods Problem

One of the more popular wordings of the problem, which MIT logic professor George Boolos said was the hardest ever, is:

"Three gods A, B, and C are called, in no particular order, True, False, and Random. True always speaks truly, False always speaks falsely, but whether Random speaks truly or falsely is a completely random matter. Your task is to determine the identities of A, B, and C by asking three yes-no questions; each question must be put to exactly one god. The gods understand English, but will answer all questions in their own language, in which the words for yes and no are da and ja, in some order. You do not know which word means which."

Boolos adds that you are allowed to ask a particular god more than one question and that Random switches between answering as if they are a truth-teller or a liar, not merely between answering "da" and "ja."

Give yourself a minute to ponder this; we'll look at a few answers below. Ready? Okay.

George Boolos' solution focuses on finding either True or False through complex questions.

In logic, there is a commonly used function often written as "iff," which means "if, and only if." It would be used to say something like "The sky is blue if and only if Des Moines is in Iowa." It is a powerful tool, as it gives a true statement only when both of its components are true or both are false. If one is true and the other is false, you have a false statement.

So, if you make a statement such as "the moon is made of Gorgonzola if, and only if, Rome is in Russia," then you have made a true statement, as both parts of it are false. The statement "The moon has no air if, and only if, Rome is in Italy," is also true, as both parts of it are true. However, "The moon is made of Gorgonzola if, and only if, Albany is the capitol of New York," is false, because one of the parts of that statement is true, and the other part is not (The fact that these items don't rely on each other is immaterial for now).

In this puzzle, iff can be used here to control for the unknown value of "da" and "ja." As the answers we get can be compared with what we know they would be if the parts of our question are all true, all false, or if they differ.

Boolos would have us begin by asking god A, "Does "da" mean yes if and only if you are True if and only if B is Random?" No matter what A says, the answer you get is extremely useful. As he explains:

"If A is True or False and you get the answer da, then as we have seen, B is Random, and therefore C is either True or False; but if A is True or False and you get the answer ja, then B is not Random, therefore B is either True or False… if A is Random and you get the answer da, C is not Random (neither is B, but that's irrelevant), and therefore C is either True or False; and if A is Random...and you get the answer ja, B is not random (neither is C, irrelevantly), and therefore B is either True or False."

No matter which god A is, an answer of "da" assures that C isn't Random, and a response of "ja" means the same for B.

From here, it is a simple matter of asking whichever one you know isn't Random questions to determine if they are telling the truth, and then one on who the last god is. Boolos suggests starting with "Does da mean yes if, and only if, Rome is in Italy?" Since one part of this is accurate, we know that True will say "da," and False will say "ja," if faced with this question.

After that, you can ask the same god something like, "Does da mean yes if, and only if, A is Random?" and know exactly who is who by how they answer and the process of elimination.

If you're confused about how this works, try going over it again slowly. Remember that the essential parts are knowing what the answer will be if two positives or two negatives always come out as a positive and that two of the gods can be relied on to act consistently.

Smullyan wrote several books with other logic puzzles in them. If you liked this one and would like to learn more about the philosophical issues they investigate, or perhaps if you'd like to try a few that are a little easier to solve, you should consider reading them. A few of his puzzles can be found with explanations in this interactive.

Massive 'Darth Vader' isopod found lurking in the Indian Ocean

The father of all giant sea bugs was recently discovered off the coast of Java.

A close up of Bathynomus raksasa

SJADE 2018
Surprising Science
  • A new species of isopod with a resemblance to a certain Sith lord was just discovered.
  • It is the first known giant isopod from the Indian Ocean.
  • The finding extends the list of giant isopods even further.
Keep reading Show less

Astronomers find more than 100,000 "stellar nurseries"

Every star we can see, including our sun, was born in one of these violent clouds.

Credit: NASA / ESA via Getty Images
Surprising Science

This article was originally published on our sister site, Freethink.

An international team of astronomers has conducted the biggest survey of stellar nurseries to date, charting more than 100,000 star-birthing regions across our corner of the universe.

Stellar nurseries: Outer space is filled with clouds of dust and gas called nebulae. In some of these nebulae, gravity will pull the dust and gas into clumps that eventually get so big, they collapse on themselves — and a star is born.

These star-birthing nebulae are known as stellar nurseries.

The challenge: Stars are a key part of the universe — they lead to the formation of planets and produce the elements needed to create life as we know it. A better understanding of stars, then, means a better understanding of the universe — but there's still a lot we don't know about star formation.

This is partly because it's hard to see what's going on in stellar nurseries — the clouds of dust obscure optical telescopes' view — and also because there are just so many of them that it's hard to know what the average nursery is like.

The survey: The astronomers conducted their survey of stellar nurseries using the massive ALMA telescope array in Chile. Because ALMA is a radio telescope, it captures the radio waves emanating from celestial objects, rather than the light.

"The new thing ... is that we can use ALMA to take pictures of many galaxies, and these pictures are as sharp and detailed as those taken by optical telescopes," Jiayi Sun, an Ohio State University (OSU) researcher, said in a press release.

"This just hasn't been possible before."

Over the course of the five-year survey, the group was able to chart more than 100,000 stellar nurseries across more than 90 nearby galaxies, expanding the amount of available data on the celestial objects tenfold, according to OSU researcher Adam Leroy.

New insights: The survey is already yielding new insights into stellar nurseries, including the fact that they appear to be more diverse than previously thought.

"For a long time, conventional wisdom among astronomers was that all stellar nurseries looked more or less the same," Sun said. "But with this survey we can see that this is really not the case."

"While there are some similarities, the nature and appearance of these nurseries change within and among galaxies," he continued, "just like cities or trees may vary in important ways as you go from place to place across the world."

Astronomers have also learned from the survey that stellar nurseries aren't particularly efficient at producing stars and tend to live for only 10 to 30 million years, which isn't very long on a universal scale.

Looking ahead: Data from the survey is now publicly available, so expect to see other researchers using it to make their own observations about stellar nurseries in the future.

"We have an incredible dataset here that will continue to be useful," Leroy said. "This is really a new view of galaxies and we expect to be learning from it for years to come."

Protecting space stations from deadly space debris

Tiny specks of space debris can move faster than bullets and cause way more damage. Cleaning it up is imperative.

Videos
  • NASA estimates that more than 500,000 pieces of space trash larger than a marble are currently in orbit. Estimates exceed 128 million pieces when factoring in smaller pieces from collisions. At 17,500 MPH, even a paint chip can cause serious damage.
  • To prevent this untrackable space debris from taking out satellites and putting astronauts in danger, scientists have been working on ways to retrieve large objects before they collide and create more problems.
  • The team at Clearspace, in collaboration with the European Space Agency, is on a mission to capture one such object using an autonomous spacecraft with claw-like arms. It's an expensive and very tricky mission, but one that could have a major impact on the future of space exploration.

This is the first episode of Just Might Work, an original series by Freethink, focused on surprising solutions to our biggest problems.

Catch more Just Might Work episodes on their channel:
https://www.freethink.com/shows/just-might-work

Personal Growth

Meet the worm with a jaw of metal

Metal-like materials have been discovered in a very strange place.

Quantcast