Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Leonardo da Vinci could visually flip between dimensions, neuroscientist claims

A neuroscientist argues that da Vinci shared a disorder with Picasso and Rembrandt.

Christopher Tyler
  • A neuroscientist at the City University of London proposes that Leonardo da Vinci may have had exotropia, allowing him to see the world with impaired depth perception.
  • If true, it means that Da Vinci would have been able to see the images he wanted to paint as they would have appeared on a flat surface.
  • The finding reminds us that sometimes looking at the world in a different way can have fantastic results.

An analysis of Renaissance artwork suggests that Leonardo Da Vinci may have had exotropia, a kind of strabismus which causes one of the eyes to be turned outwards, and that the condition may have helped him as a painter by allowing him to switch between three-dimensional and two-dimensional vision. He wouldn't have been alone, other famous painters who are speculated to have had the condition include Rembrandt and Picasso.

The study

The Virtuvian Man. Christopher Tyler suggests that Da Vinci used his own image as a template for the face in the drawing.

Vitruvian Man, by Leonardo da Vinci created c. 1480–1490

Professor Christopher Tyler of the City University of London's optometry division analyzed six pieces of Renaissance art by or held to be images of Da Vinci, including the famous Vitruvian Man. By looking at the paintings, drawings, and statues and applying the same techniques optometrists use on patients, Tyler was able to conclude that the eyes of the men depicted were misaligned.

He concluded that, if the images he analyzed were truly reflective of how Da Vinci looked, that the great artist had a mild case of exotropia.

How would this have helped him paint?

Shira Robbins, a professor of ophthalmology at the University of California at San Diego, who was not involved with the project, explained to The Washington Post how individuals with exotropia often turn to additional information to help understand the world around them:

"What happens in some people is when they're only using one eye . . . they develop other cues besides traditional depth perception to understand where things are in space, looking at color and shadow in a way that most of us who use both eyes at a time don't really appreciate."

Dr. Robbins agrees that, if the artworks analyzed accurately depict Da Vinci, then he probably had exotropia.

If Da Vinci did have a mild form of the condition, which would allow him to focus with both eyes when concentrating and with one when relaxed, Tyler asserts that the famed artist could have viewed the world in two or three dimensions at will, showing him the world exactly as he would need to recreate it on a flat surface. Quite the superpower for an artist.

Does this mean Da Vinci would have been a hack if he had normal eyesight?

Christopher Tyler

​A graph showing the difference in where each eye is focused for each painting, drawing, and statue used in the study. The larger the difference, the more pronounced the exotropia is in the image. 

Not at all. What Dr. Tyler is suggesting is that the tendency of people who have exotropia to rely on using one eye to see the world and thereby lose some depth perception allowed Da Vinci to understand better how the three-dimensional objects in the world could be translated into a two-dimensional image on a canvas. This could account for some of Da Vinci's skill in depicting shadow and subtle changes in color, since he would have relied on these details to understand the world.

His polymathic brilliance extended far beyond art, and nobody is claiming that his ideas for flying machines, tanks, or other inventions were at all influenced by a vision problem.

How can we know this? He has been dead for five hundred years.

There are reasons to be cautious anytime we make claims about people who are long dead. In this case, we have the bonus problem that we aren't 100 percent sure that the images used are supposed to look like Da Vinci.

That is the major caveat of the idea; all of the images used as evidence of his condition are assumed to look like him. While some of the images, like the David by Andrea del Verrocchio, are generally agreed to be based on Leonardo the other pictures are claimed to be reflective of him based only on his statement that "[The soul] guides the painter's arm and makes him reproduce himself, since it appears to the soul that this is the best way to represent a human being."

Tyler also argues that the portraits he claims are based on Da Vinci share similarities with the images generally accepted to be portraits of him; including similar hair and facial features. This lends weight to the idea that the artist incorporated his own traits into his artwork, including his vision problem.

Leonardo da Vinci was undoubtedly one of the greatest geniuses of all time. If he had exotropia, then it was merely a minor addition to his artistic skills. It does, however, give us a literal example of how people who look at the world differently can use that vantage point to their advantage to create things we all can appreciate.

Hulu's original movie "Palm Springs" is the comedy we needed this summer

Andy Samberg and Cristin Milioti get stuck in an infinite wedding time loop.

Gear
  • Two wedding guests discover they're trapped in an infinite time loop, waking up in Palm Springs over and over and over.
  • As the reality of their situation sets in, Nyles and Sarah decide to enjoy the repetitive awakenings.
  • The film is perfectly timed for a world sheltering at home during a pandemic.
Keep reading Show less

Two MIT students just solved Richard Feynman’s famed physics puzzle

Richard Feynman once asked a silly question. Two MIT students just answered it.

Surprising Science

Here's a fun experiment to try. Go to your pantry and see if you have a box of spaghetti. If you do, take out a noodle. Grab both ends of it and bend it until it breaks in half. How many pieces did it break into? If you got two large pieces and at least one small piece you're not alone.

Keep reading Show less

Our ‘little brain’ turns out to be pretty big

The multifaceted cerebellum is large — it's just tightly folded.

Image source: Sereno, et al
Mind & Brain
  • A powerful MRI combined with modeling software results in a totally new view of the human cerebellum.
  • The so-called 'little brain' is nearly 80% the size of the cerebral cortex when it's unfolded.
  • This part of the brain is associated with a lot of things, and a new virtual map is suitably chaotic and complex.

Just under our brain's cortex and close to our brain stem sits the cerebellum, also known as the "little brain." It's an organ many animals have, and we're still learning what it does in humans. It's long been thought to be involved in sensory input and motor control, but recent studies suggests it also plays a role in a lot of other things, including emotion, thought, and pain. After all, about half of the brain's neurons reside there. But it's so small. Except it's not, according to a new study from San Diego State University (SDSU) published in PNAS (Proceedings of the National Academy of Sciences).

A neural crêpe

A new imaging study led by psychology professor and cognitive neuroscientist Martin Sereno of the SDSU MRI Imaging Center reveals that the cerebellum is actually an intricately folded organ that has a surface area equal in size to 78 percent of the cerebral cortex. Sereno, a pioneer in MRI brain imaging, collaborated with other experts from the U.K., Canada, and the Netherlands.

So what does it look like? Unfolded, the cerebellum is reminiscent of a crêpe, according to Sereno, about four inches wide and three feet long.

The team didn't physically unfold a cerebellum in their research. Instead, they worked with brain scans from a 9.4 Tesla MRI machine, and virtually unfolded and mapped the organ. Custom software was developed for the project, based on the open-source FreeSurfer app developed by Sereno and others. Their model allowed the scientists to unpack the virtual cerebellum down to each individual fold, or "folia."

Study's cross-sections of a folded cerebellum

Image source: Sereno, et al.

A complicated map

Sereno tells SDSU NewsCenter that "Until now we only had crude models of what it looked like. We now have a complete map or surface representation of the cerebellum, much like cities, counties, and states."

That map is a bit surprising, too, in that regions associated with different functions are scattered across the organ in peculiar ways, unlike the cortex where it's all pretty orderly. "You get a little chunk of the lip, next to a chunk of the shoulder or face, like jumbled puzzle pieces," says Sereno. This may have to do with the fact that when the cerebellum is folded, its elements line up differently than they do when the organ is unfolded.

It seems the folded structure of the cerebellum is a configuration that facilitates access to information coming from places all over the body. Sereno says, "Now that we have the first high resolution base map of the human cerebellum, there are many possibilities for researchers to start filling in what is certain to be a complex quilt of inputs, from many different parts of the cerebral cortex in more detail than ever before."

This makes sense if the cerebellum is involved in highly complex, advanced cognitive functions, such as handling language or performing abstract reasoning as scientists suspect. "When you think of the cognition required to write a scientific paper or explain a concept," says Sereno, "you have to pull in information from many different sources. And that's just how the cerebellum is set up."

Bigger and bigger

The study also suggests that the large size of their virtual human cerebellum is likely to be related to the sheer number of tasks with which the organ is involved in the complex human brain. The macaque cerebellum that the team analyzed, for example, amounts to just 30 percent the size of the animal's cortex.

"The fact that [the cerebellum] has such a large surface area speaks to the evolution of distinctively human behaviors and cognition," says Sereno. "It has expanded so much that the folding patterns are very complex."

As the study says, "Rather than coordinating sensory signals to execute expert physical movements, parts of the cerebellum may have been extended in humans to help coordinate fictive 'conceptual movements,' such as rapidly mentally rearranging a movement plan — or, in the fullness of time, perhaps even a mathematical equation."

Sereno concludes, "The 'little brain' is quite the jack of all trades. Mapping the cerebellum will be an interesting new frontier for the next decade."

Economists show how welfare programs can turn a "profit"

What happens if we consider welfare programs as investments?

A homeless man faces Wall Street

Spencer Platt/Getty Images
Politics & Current Affairs
  • A recently published study suggests that some welfare programs more than pay for themselves.
  • It is one of the first major reviews of welfare programs to measure so many by a single metric.
  • The findings will likely inform future welfare reform and encourage debate on how to grade success.
Keep reading Show less
Videos

Unhappy at work? How to find meaning and maintain your mental health

Finding a balance between job satisfaction, money, and lifestyle is not easy.

Scroll down to load more…
Quantcast