Big ideas.
Once a week.
Subscribe to our weekly newsletter.
The dangers of the chemical imbalance theory of depression
A new Harvard study finds that the language you use affects patient outcome.

- A study at Harvard's McLean Hospital claims that using the language of chemical imbalances worsens patient outcomes.
- Though psychiatry has largely abandoned DSM categories, professor Joseph E Davis writes that the field continues to strive for a "brain-based diagnostic system."
- Chemical explanations of mental health appear to benefit pharmaceutical companies far more than patients.
The pharmacological revolution began with tranquilizers. Miltown was the country's first "blockbuster" drug. Touted for relieving everything from skin problems and stomach distress to lack of focus and social anxiety—and, of course, "the blues"—tranquilizers were the first psychiatric pills to widely infiltrate a country that, for the first time in its history, had expendable income and leisure time.
By 1971, 15 percent of Americans had taken a minor tranquilizer. Two years later, 104 million prescriptions were written. Incredibly, this was 11 years after the Kefauver-Harris Amendments, which required doctors to specify a disease when treating mental health issues. They could no longer market cures for general dis-ease, such as feeling "blah" (an actual complaint). This law meant the medical industry had to invent diseases in order to sell pills, and it certainly rose to the occasion.
Unlike diabetes or cancer, which appear in blood samples, depression is subjective. The chemical marker often used, serotonin, is correlated to troublesome mental health. Serotonin doesn't cause the blahs. Decade after decade, however, we've been marketed the idea that chemical imbalance is the culprit behind depression. As a new study, published in Journal of Affective Disorder, shows, as the language of clinical neuroscience replaces the vocabulary of psychotherapy, patients' outcomes worsen.
A team based at McLean Hospital, Harvard Medical School's largest psychiatric facility, wanted to understand the impact of neurobiological and genetic terms being used to describe mental illness. Does the language we use affect treatment protocols and patient expectations? According to their study, the answer is yes.
The narrative of serotonin imbalance has been challenged for decades. As Joseph E Davis describes in his book, "Chemically Imbalanced," the 1994 update of the psychiatric bible, DSM-IV, offered peak brain depletion rhetoric. Then the theory found a cliff.
"In the years following, the validity of the DSM categories, along with the depletion hypothesis and other notions of 'chemical imbalance' would come to be largely rejected in psychiatry."
Challenging the Chemical Imbalance Theory of Mental Disorders: Robert Whitaker, Journalist
This is a far cry from Howard Rusk's 1947 NY Times editorial calling for mental health disorders to be treated similarly to physical disease (such as diabetes and cancer). This mindset—not attributable to Rusk alone; he was merely relaying the psychiatric currency of the time—has dominated the field for decades: mental anguish is a genetic and/or chemical-deficiency disorder that must be treated pharmacologically.
Even as psychiatry untethered from DSM categories, the field still used chemistry to validate its existence. Psychotherapy, arguably the most efficient means for managing much of our anxiety and depression, is time- and labor-intensive. Counseling requires an empathetic and wizened ear to guide the patient to do the work. Ingesting a pill to do that work for you is more seductive, and easier. As Davis writes, even though the industry abandoned the DSM, it continues to strive for a "brain-based diagnostic system."
That language has infiltrated public consciousness. The team at McLean surveyed 279 patients seeking acute treatment for depression. As they note, the causes of psychological distress have constantly shifted over the millennia: humoral imbalance in the ancient world; spiritual possession in medieval times; early childhood experiences around the time of Freud; maladaptive thought patterns dominant in the latter half of last century. While the team found that psychosocial explanations remain popular, biogenetic explanations (such as the chemical imbalance theory) are becoming more prominent.
Interestingly, the 80 people Davis interviewed for his book predominantly relied on biogenetic explanations. Instead of doctors diagnosing patients, as you might expect, they increasingly serve to confirm what patients come in suspecting. Patients arrive at medical offices confident in their self-diagnoses. They believe a pill is the best course of treatment, largely because they saw an advertisement or listened to a friend. Doctors too often oblige without further curiosity as to the reasons for their distress.
Image: Illustration Forest / Shutterstock
While medicalizing mental health softens the stigma of depression—if a disorder is inheritable, it was never really your fault—it also disempowers the patient. The team at McLean writes,
"More recent studies indicate that participants who are told that their depression is caused by a chemical imbalance or genetic abnormality expect to have depression for a longer period, report more depressive symptoms, and feel they have less control over their negative emotions."
Davis points out the language used by direct-to-consumer advertising prevalent in America. Doctors, media, and advertising agencies converge around common messages, such as everyday blues is a "real medical condition," everyone is susceptible to clinical depression, and drugs correct underlying somatic conditions that you never consciously control. He continues,
"Your inner life and evaluative stance are of marginal, if any, relevance; counseling or psychotherapy aimed at self-insight would serve little purpose."
The McLean team discovered a similar phenomenon: patients expect little from psychotherapy and a lot from pills. When depression is treated as the result of an internal and immutable essence instead of environmental conditions, behavioral changes are not expected to make much difference. Chemistry rules the popular imagination.
Why Depression Isn't Just a Chemical Imbalance
Many years ago, my best friend tried to quit smoking. He asked for help. While I'm no addiction expert, I offered what I knew from my fitness toolkit: breathing exercises and cardiovascular training, methods for strengthening his body and mind that could, I hoped, inspire him to take better care of himself in general. He replied, "No, I meant something like a pill."
A few years later, he quit for good. After failing the cold turkey method a number of times, it finally stuck. Maybe it was watching his children grow up—the reason my parents quit when I was young. This method is not easy, however. It challenges you; it forces you to confront your demons; it drastically affects your brain chemistry. Yet, in the long run, it sometimes works.
Sometimes pills work, too. But often they do not. The journalist Robert Whitaker, author of "Anatomy of an Epidemic," discussed the clinical trial process during our recent conversation. While the FDA process appears thorough from the outside, pharmaceutical companies only need to prove that a drug works better than placebo, not that it works for the most amount of people. He continues,
"Let's say you have a drug that provides a relief of symptoms in 20 percent of people. In placebo, it's 10 percent. How many people in that study do not benefit from the drug? Nine out of 10. How many people are exposed to the adverse effects of the drug? 100 percent."
Even though some pharmacological interventions show little efficacy, and even though Xanax, an addictive and destructive benzodiazepine that only showed short-term (four weeks) efficacy in clinical trials, is being prescribed for many months and years, doctors continue to use the language of clinical neuroscience to describe mental health issues. If chemistry is the problem, people will turn to chemistry for the solution.
Perhaps we should, as psychiatrist Dean Schuyler writes in a 1974 book, recognize that most depressive episodes "will run their course and terminate with virtually complete recovery without specific intervention." The problem is that idea isn't profitable. As long as the gatekeepers continue to use the language of chemical imbalances to describe what for many is just an episodic case of the "blahs," we'll continue creating more problems than we solve.
--
Stay in touch with Derek on Twitter, Facebook and Substack. His next book is "Hero's Dose: The Case For Psychedelics in Ritual and Therapy."
- Anti-depressants are guesswork. What does that mean for those ... ›
- Why your next depression medication could be Advil - Big Think ›
- Microdosing LSD followed by decreased depression, study shows ... ›
- Depression isn't a chemical imbalance. It's a social problem. We ... ›
- If depression isn't caused by a chemical imbalance, how do we treat it? - Big Think ›
- Xanax and Valium issued new addiction warnings - Big Think ›
There are 5 eras in the universe's lifecycle. Right now, we're in the second era.
Astronomers find these five chapters to be a handy way of conceiving the universe's incredibly long lifespan.
Image based on logarithmic maps of the Universe put together by Princeton University researchers, and images produced by NASA based on observations made by their telescopes and roving spacecraft
- We're in the middle, or thereabouts, of the universe's Stelliferous era.
- If you think there's a lot going on out there now, the first era's drama makes things these days look pretty calm.
- Scientists attempt to understand the past and present by bringing together the last couple of centuries' major schools of thought.
The 5 eras of the universe
<p>There are many ways to consider and discuss the past, present, and future of the universe, but one in particular has caught the fancy of many astronomers. First published in 1999 in their book <a href="https://amzn.to/2wFQLiL" target="_blank"><em>The Five Ages of the Universe: Inside the Physics of Eternity</em></a>, <a href="https://en.wikipedia.org/wiki/Fred_Adams" target="_blank">Fred Adams</a> and <a href="https://en.wikipedia.org/wiki/Gregory_P._Laughlin" target="_blank">Gregory Laughlin</a> divided the universe's life story into five eras:</p><ul><li>Primordial era</li><li>Stellferous era</li><li>Degenerate era</li><li>Black Hole Era</li><li>Dark era</li></ul><p>The book was last updated according to current scientific understandings in 2013.</p><p>It's worth noting that not everyone is a subscriber to the book's structure. Popular astrophysics writer <a href="https://www.forbes.com/sites/ethansiegel/#30921c93683e" target="_blank">Ethan C. Siegel</a>, for example, published an article on <a href="https://www.forbes.com/sites/startswithabang/2019/07/26/we-have-already-entered-the-sixth-and-final-era-of-our-universe/#7072d52d4e5d" target="_blank"><em>Medium</em></a> last June called "We Have Already Entered The Sixth And Final Era Of Our Universe." Nonetheless, many astronomers find the quintet a useful way of discuss such an extraordinarily vast amount of time.</p>The Primordial era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEyMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNjEzMjY1OX0.PRpvAoa99qwsDNprDme9tBWDim6mS7Mjx6IwF60fSN8/img.jpg?width=980" id="db4eb" class="rm-shortcode" data-rm-shortcode-id="0e568b0cc12ed624bb8d7e5ff45882bd" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="1049" />Image source: Sagittarius Production/Shutterstock
<p> This is where the universe begins, though what came before it and where it came from are certainly still up for discussion. It begins at the Big Bang about 13.8 billion years ago. </p><p> For the first little, and we mean <em>very</em> little, bit of time, spacetime and the laws of physics are thought not yet to have existed. That weird, unknowable interval is the <a href="https://www.universeadventure.org/eras/era1-plankepoch.htm" target="_blank">Planck Epoch</a> that lasted for 10<sup>-44</sup> seconds, or 10 million of a trillion of a trillion of a trillionth of a second. Much of what we currently believe about the Planck Epoch eras is theoretical, based largely on a hybrid of general-relativity and quantum theories called quantum gravity. And it's all subject to revision. </p><p> That having been said, within a second after the Big Bang finished Big Banging, inflation began, a sudden ballooning of the universe into 100 trillion trillion times its original size. </p><p> Within minutes, the plasma began cooling, and subatomic particles began to form and stick together. In the 20 minutes after the Big Bang, atoms started forming in the super-hot, fusion-fired universe. Cooling proceeded apace, leaving us with a universe containing mostly 75% hydrogen and 25% helium, similar to that we see in the Sun today. Electrons gobbled up photons, leaving the universe opaque. </p><p> About 380,000 years after the Big Bang, the universe had cooled enough that the first stable atoms capable of surviving began forming. With electrons thus occupied in atoms, photons were released as the background glow that astronomers detect today as cosmic background radiation. </p><p> Inflation is believed to have happened due to the remarkable overall consistency astronomers measure in cosmic background radiation. Astronomer <a href="https://www.youtube.com/watch?v=IGCVTSQw7WU" target="_blank">Phil Plait</a> suggests that inflation was like pulling on a bedsheet, suddenly pulling the universe's energy smooth. The smaller irregularities that survived eventually enlarged, pooling in denser areas of energy that served as seeds for star formation—their gravity pulled in dark matter and matter that eventually coalesced into the first stars. </p>The Stelliferous era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTEzNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxMjA0OTcwMn0.GVCCFbBSsPdA1kciHivFfWlegOfKfXUfEtFKEF3otQg/img.jpg?width=980" id="bc650" class="rm-shortcode" data-rm-shortcode-id="c8f86bf160ecdea6b330f818447393cd" data-rm-shortcode-name="rebelmouse-image" data-width="481" data-height="720" />Image source: Casey Horner/unsplash
<p>The era we know, the age of stars, in which most matter existing in the universe takes the form of stars and galaxies during this active period. </p><p>A star is formed when a gas pocket becomes denser and denser until it, and matter nearby, collapse in on itself, producing enough heat to trigger nuclear fusion in its core, the source of most of the universe's energy now. The first stars were immense, eventually exploding as supernovas, forming many more, smaller stars. These coalesced, thanks to gravity, into galaxies.</p><p>One axiom of the Stelliferous era is that the bigger the star, the more quickly it burns through its energy, and then dies, typically in just a couple of million years. Smaller stars that consume energy more slowly stay active longer. In any event, stars — and galaxies — are coming and going all the time in this era, burning out and colliding.</p><p>Scientists predict that our Milky Way galaxy, for example, will crash into and combine with the neighboring Andromeda galaxy in about 4 billion years to form a new one astronomers are calling the Milkomeda galaxy.</p><p>Our solar system may actually survive that merger, amazingly, but don't get too complacent. About a billion years later, the Sun will start running out of hydrogen and begin enlarging into its red giant phase, eventually subsuming Earth and its companions, before shrining down to a white dwarf star.</p>The Degenerate era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE1MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYxNTk3NDQyN30.gy4__ALBQrdbdm-byW5gQoaGNvFTuxP5KLYxEMBImNc/img.jpg?width=980" id="77f72" class="rm-shortcode" data-rm-shortcode-id="08bb56ea9fde2cee02d63ed472d79ca3" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Diego Barucco/Shutterstock/Big Think
<p>Next up is the Degenerate era, which will begin about 1 quintillion years after the Big Bang, and last until 1 duodecillion after it. This is the period during which the remains of stars we see today will dominate the universe. Were we to look up — we'll assuredly be outta here long before then — we'd see a much darker sky with just a handful of dim pinpoints of light remaining: <a href="https://earthsky.org/space/evaporating-giant-exoplanet-white-dwarf-star" target="_blank">white dwarfs</a>, <a href="https://earthsky.org/space/new-observations-where-stars-end-and-brown-dwarfs-begin" target="_blank">brown dwarfs</a>, and <a href="https://earthsky.org/astronomy-essentials/definition-what-is-a-neutron-star" target="_blank">neutron stars</a>. These"degenerate stars" are much cooler and less light-emitting than what we see up there now. Occasionally, star corpses will pair off into orbital death spirals that result in a brief flash of energy as they collide, and their combined mass may become low-wattage stars that will last for a little while in cosmic-timescale terms. But mostly the skies will be be bereft of light in the visible spectrum.</p><p>During this era, small brown dwarfs will wind up holding most of the available hydrogen, and black holes will grow and grow and grow, fed on stellar remains. With so little hydrogen around for the formation of new stars, the universe will grow duller and duller, colder and colder.</p><p>And then the protons, having been around since the beginning of the universe will start dying off, dissolving matter, leaving behind a universe of subatomic particles, unclaimed radiation…and black holes.</p>The Black Hole era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE2MS9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMjE0OTQ2MX0.ifwOQJgU0uItiSRg9z8IxFD9jmfXlfrw6Jc1y-22FuQ/img.jpg?width=980" id="103ea" class="rm-shortcode" data-rm-shortcode-id="f0e6a71dacf95ee780dd7a1eadde288d" data-rm-shortcode-name="rebelmouse-image" data-width="1400" data-height="787" />Image source: Vadim Sadovski/Shutterstock/Big Think
<p> For a considerable length of time, black holes will dominate the universe, pulling in what mass and energy still remain. </p><p> Eventually, though, black holes evaporate, albeit super-slowly, leaking small bits of their contents as they do. Plait estimates that a small black hole 50 times the mass of the sun would take about 10<sup>68</sup> years to dissipate. A massive one? A 1 followed by 92 zeros. </p><p> When a black hole finally drips to its last drop, a small pop of light occurs letting out some of the only remaining energy in the universe. At that point, at 10<sup>92</sup>, the universe will be pretty much history, containing only low-energy, very weak subatomic particles and photons. </p>The Dark Era
<img type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8yMjkwMTE5NC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0Mzg5OTEyMH0.AwiPRGJlGIcQjjSoRLi6V3g5klRYtxQJIpHFgZdZkuo/img.jpg?width=980" id="60c77" class="rm-shortcode" data-rm-shortcode-id="7a857fb7f0d85cf4a248dbb3350a6e1c" data-rm-shortcode-name="rebelmouse-image" data-width="1440" data-height="810" />Image source: Big Think
<p>We can sum this up pretty easily. Lights out. Forever.</p>Dark energy: The apocalyptic wild card of the universe
Dr. Katie Mack explains what dark energy is and two ways it could one day destroy the universe.
- The universe is expanding faster and faster. Whether this acceleration will end in a Big Rip or will reverse and contract into a Big Crunch is not yet understood, and neither is the invisible force causing that expansion: dark energy.
- Physicist Dr. Katie Mack explains the difference between dark matter, dark energy, and phantom dark energy, and shares what scientists think the mysterious force is, its effect on space, and how, billions of years from now, it could cause peak cosmic destruction.
- The Big Rip seems more probable than a Big Crunch at this point in time, but scientists still have much to learn before they can determine the ultimate fate of the universe. "If we figure out what [dark energy is] doing, if we figure out what it's made of, how it's going to change in the future, then we will have a much better idea for how the universe will end," says Mack.
Astrophysicists find unique "hot Jupiter" planet without clouds
A unique exoplanet without clouds or haze was found by astrophysicists from Harvard and Smithsonian.
Illustration of WASP-62b, the Jupiter-like planet without clouds or haze in its atmosphere.
- Astronomers from Harvard and Smithsonian find a very rare "hot Jupiter" exoplanet without clouds or haze.
- Such planets were formed differently from others and offer unique research opportunities.
- Only one other such exoplanet was found previously.
Munazza Alam – a graduate student at the Center for Astrophysics | Harvard & Smithsonian.
Credit: Jackie Faherty
Jupiter's Colorful Cloud Bands Studied by Spacecraft
<span style="display:block;position:relative;padding-top:56.25%;" class="rm-shortcode" data-rm-shortcode-id="8a72dfe5b407b584cf867852c36211dc"><iframe type="lazy-iframe" data-runner-src="https://www.youtube.com/embed/GzUzCesfVuw?rel=0" width="100%" height="auto" frameborder="0" scrolling="no" style="position:absolute;top:0;left:0;width:100%;height:100%;"></iframe></span>Five collectibles with better returns than the stock market
People often make a killing in stocks, but there are other ways to potentially turn major profits.
