Your 'big break' can happen at any point of your career, Boston researchers say

It takes "deliberate practice," though, to increase your odds of attaining success.

Your 'big break' can happen at any point of your career, Boston researchers say

Scientists can have their big break any point in their career. A paper published in the journal Science in 2016 determined that from a big data analysis on scientific careers from 1893 to 2010.

The research team, led by Roberta Sinatra and Albert-László Barabási of Northeastern University, determined that a scientist can make a lasting impact with their research from the very first published paper to the very last. There is no definite trajectory for success, and every successful scientist's career is a mix of skill, persistence, and luck.

The research team figured all that out by analyzing publication information from scientists who published papers between 1893 to 2010. Those data points began with 236,884 physicist publications and expanded to 24,630 Google Scholar profiles and 514,896 publications across seven scientific disciplines “from physics to chemistry, economics to cognitive science," according to the Northeastern press release.

Credit: Kim Albrecht / Northeastern University

They crunched all of that data and came up with a productivity quotient or “Q." “The Q factor cap­tures a com­bi­na­tion of ability, edu­ca­tion, and knowl­edge… how good is a sci­en­tist at picking an idea and turning it into a discovery," Barabási explains in the press release. “A high Q com­bined with con­tinued efforts pro­vide a fore­cast of what's to come. We cannot pre­dict when a big hit will come, but by exam­ining Q — a stable factor — we can pre­dict that one will likely come in the future," Sinatra adds later. Here's an example of what that might look like:

The publication history of two Nobel laureates, Frank A. Wilczek (Nobel Prize in Physics, 2004) and John B. Fenn (Nobel Prize in Chemistry, 2002), illustrating that the highest-impact work can be, with the same probability, anywhere in the sequence of papers published by a scientist.

The probability of a scientist's first paper being enormously impactful is exactly the same as their last paper being enormously impactful. As the study authors write, “We find that the highest-impact work in a scientist's career is randomly distributed within her body of work. That is, the highest-impact work can be, with the same probability, anywhere in the sequence of papers published by a scientist." That probability remains regardless of discipline, career length, “working in different decades, and publishing solo or with teams and whether credit is assigned uniformly or unevenly among collaborators," according to the study.

“The composition of this Q quality, whatever you call it, is likely to vary in different fields," Dr. Dean Simonton of the University of California, Davis told The New York Times about the Northeastern study. “That's why you can see people who are highly successful in one field switch careers and not do so well."

The biggest factor for success? “Pro­duc­tivity and the will to keep trying that cor­re­sponds with great dis­cov­eries, whether the sci­en­tist is 20, 40, or even 70," explains Northeastern. “What mat­ters is not the timing of dis­cov­eries that could affect future gen­er­a­tions but that they hap­pened... under­standing that good sci­en­tists, if they have the resources to stay pro­duc­tive, could gen­erate future big dis­cov­eries, inde­pen­dent of age, is essen­tial for us to move for­ward in thinking about how to boost sci­ence."

And if they can do it, you can, too.

The scientists are essentially cultivating the habit of “deliberate practice," or pushing yourself slightly beyond your skill level. By utilizing deliberate practice every time you want to get better at something — from building a business to learning a language to writing that novel for NaNoWriMo — you increase your skill levels. You will most likely fail, but you'll learn how to overcome that obstacle and push past it next time. That creates an atmosphere for success, as author David Shenk told us:

So remember: the next time you want to succeed at something, keep trying. Or, as Barabási put it for The Times, “The bottom line is: Brother, never give up. When you give up, that's when your creativity ends."

How tiny bioelectronic implants may someday replace pharmaceutical drugs

Scientists are using bioelectronic medicine to treat inflammatory diseases, an approach that capitalizes on the ancient "hardwiring" of the nervous system.

Left: The vagus nerve, the body's longest cranial nerve. Right: Vagus nerve stimulation implant by SetPoint Medical.

Credit: Adobe Stock / SetPoint Medical
Sponsored by Northwell Health
  • Bioelectronic medicine is an emerging field that focuses on manipulating the nervous system to treat diseases.
  • Clinical studies show that using electronic devices to stimulate the vagus nerve is effective at treating inflammatory diseases like rheumatoid arthritis.
  • Although it's not yet approved by the US Food and Drug Administration, vagus nerve stimulation may also prove effective at treating other diseases like cancer, diabetes and depression.
Keep reading Show less

Japan finds a huge cache of scarce rare-earth minerals

Japan looks to replace China as the primary source of critical metals

Rare-earth magnets (nikkytok/Shutterstock)
Technology & Innovation
  • Enough rare earth minerals have been found off Japan to last centuries
  • Rare earths are important materials for green technology, as well as medicine and manufacturing
  • Where would we be without all of our rare-earth magnets?
Keep reading Show less

Best. Science. Fiction. Show. Ever.

"The Expanse" is the best vision I've ever seen of a space-faring future that may be just a few generations away.

Credit: "The Expanse" / Syfy
13-8
  • Want three reasons why that headline is justified? Characters and acting, universe building, and science.
  • For those who don't know, "The Expanse" is a series that's run on SyFy and Amazon Prime set about 200 years in the future in a mostly settled solar system with three waring factions: Earth, Mars, and Belters.
  • No other show I know of manages to use real science so adeptly in the service of its story and its grand universe building.
Keep reading Show less

How exercise changes your brain biology and protects your mental health

Contrary to what some might think, the brain is a very plastic organ.

PRAKASH MATHEMA/AFP via Getty Images
Mind & Brain

As with many other physicians, recommending physical activity to patients was just a doctor chore for me – until a few years ago. That was because I myself was not very active.

Keep reading Show less
Surprising Science

Here's a 10-step plan to save our oceans

By 2050, there may be more plastic than fish in the sea.

Quantcast