Graphene Will Change the Way We Live

The theory behind the substance graphene was first explored by theoretical physicist Philip Wallace in 1947 as kind of a starting point when he was doing research trying to understand the electronic properties of more complex, 3D graphite. although the name graphene wasn't actually coined until 40 years later, where it was used to describe single sheets of graphite. In other words, it's the name given to a flat monolayer of carbon atoms that are tightly packed into a 2D honeycomb lattice; like a molecular chicken-wire that is one atom thick. It's essentially the basic building block for graphitic materials of all other dimensionalities; it's a stepping stone to building bigger things. Graphene in itself however wasn't discovered until 2004 in its full observable and testable form.


Since then, in the past 6 years, scientists have discovered that the substance retains some amazing properties. Some say that it will be heralded as one of the materials that will literally change our lives in the 21st century. Not only is graphene the thinnest possible material that is feasible, but it's also about 200 times stronger than steel and conducts electricity better than any material known to man—at room temperature. Researchers at Columbia University's Fu Foundation School of Engineering who proved that graphene is the strongest material ever measured said that "It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap."

If you follow my work, you have surely heard me speak about Moore's Law and the race to find a suitable replacement for silicon semi-conductors. Graphene may in fact be the answer to these problems. The fastest growing problem facing chip engineers around the world is that everyone wants to increase power, make chips smaller and achieve both of these without significantly rising the temperature. The development of graphene transistors would in theory be able to run at much faster speeds and be able to ultimately battle the heat at a microscopic scale.

Just yesterday, two scientists; Konstantin Novoselow and Andre Geim, were awarded the 2010 Nobel Prize in physics for their pioneering work on the discovery of graphene. The award acknowledged graphene's promise to revolutionize the electronics industry and the potential production of lightweight, stronger-than-steel materials among a long list of other coming applications. Putting things into perspective, Geim states that he would "compare this situation with the one 100 years ago when people discovered polymers. It took some time before polymers went into use in plastics and became so important in our lives."

Andre Geim (left) and Konstantin Novoselov (right) and an artist's impression of a corrugated graphene sheet.

Potential applications for the material include the replacing of carbon fibers in composite materials to eventually aid in the production of lighter aircraft and satellites; replacing silicon in transistors; embedding the material in plastics to enable them to conduct electricity; graphene-based sensors could sniff out dangerous molecules; increasing the efficiency of electric batteries by use of graphene powder; optoelectronics; stiffer-stronger-lighter plastics; leak-tight, plastic containers that keep food fresh for weeks; transparent conductive coatings for solar cells and displays; stronger wind turbines; stronger medical implants; better sports equipment; supercapacitors; improved conductivity of materials; high-power high frequency electronic devices; artificial membranes for separating two liquid reservoirs; advancements in touchscreens; LCD's; OLED's; graphene nanoribbons could be a way to construct ballistic transistors; and nanogaps in graphene sheets may potentially provide a new technique for rapid DNA sequencing.

As I stated, this is only a short-list—imagine some of the applications that haven't been examined yet! Imagine the implications just on the computer revolution alone. IBM has already demonstrated a 100GHz graphene-based transistor and stated that a 1THz processor is on the horizon. The future of graphene holds limitless possibilities into literally every corner of industry and manufacturing, and as the years pass it will likely become a commonplace substance, the way that plastic is today.

3D printing might save your life one day. It's transforming medicine and health care.

What can 3D printing do for medicine? The "sky is the limit," says Northwell Health researcher Dr. Todd Goldstein.

Northwell Health
Sponsored by Northwell Health
  • Medical professionals are currently using 3D printers to create prosthetics and patient-specific organ models that doctors can use to prepare for surgery.
  • Eventually, scientists hope to print patient-specific organs that can be transplanted safely into the human body.
  • Northwell Health, New York State's largest health care provider, is pioneering 3D printing in medicine in three key ways.
Keep reading Show less

Where do atoms come from? Billions of years of cosmic fireworks.

The periodic table was a lot simpler at the beginning of the universe.

Active ingredient in Roundup found in 95% of studied beers and wines

The controversial herbicide is everywhere, apparently.

(MsMaria/Shutterstock)
Surprising Science
  • U.S. PIRG tested 20 beers and wines, including organics, and found Roundup's active ingredient in almost all of them.
  • A jury on August 2018 awarded a non-Hodgkin's lymphoma victim $289 million in Roundup damages.
  • Bayer/Monsanto says Roundup is totally safe. Others disagree.
Keep reading Show less

An organism found in dirt may lead to an anxiety vaccine, say scientists

Can dirt help us fight off stress? Groundbreaking new research shows how.

University of Colorado Boulder
Surprising Science
  • New research identifies a bacterium that helps block anxiety.
  • Scientists say this can lead to drugs for first responders and soldiers, preventing PTSD and other mental issues.
  • The finding builds on the hygiene hypothesis, first proposed in 1989.

Are modern societies trying too hard to be clean, at the detriment to public health? Scientists discovered that a microorganism living in dirt can actually be good for us, potentially helping the body to fight off stress. Harnessing its powers can lead to a "stress vaccine".

Researchers at the University of Colorado Boulder found that the fatty 10(Z)-hexadecenoic acid from the soil-residing bacterium Mycobacterium vaccae aids immune cells in blocking pathways that increase inflammation and the ability to combat stress.

The study's senior author and Integrative Physiology Professor Christopher Lowry described this fat as "one of the main ingredients" in the "special sauce" that causes the beneficial effects of the bacterium.

The finding goes hand in hand with the "hygiene hypothesis," initially proposed in 1989 by the British scientist David Strachan. He maintained that our generally sterile modern world prevents children from being exposed to certain microorganisms, resulting in compromised immune systems and greater incidences of asthma and allergies.

Contemporary research fine-tuned the hypothesis, finding that not interacting with so-called "old friends" or helpful microbes in the soil and the environment, rather than the ones that cause illnesses, is what's detrimental. In particular, our mental health could be at stake.

"The idea is that as humans have moved away from farms and an agricultural or hunter-gatherer existence into cities, we have lost contact with organisms that served to regulate our immune system and suppress inappropriate inflammation," explained Lowry. "That has put us at higher risk for inflammatory disease and stress-related psychiatric disorders."

University of Colorado Boulder

Christopher Lowry

This is not the first study on the subject from Lowry, who published previous work showing the connection between being exposed to healthy bacteria and mental health. He found that being raised with animals and dust in a rural environment helps children develop more stress-proof immune systems. Such kids were also likely to be less at risk for mental illnesses than people living in the city without pets.

Lowry's other work also pointed out that the soil-based bacterium Mycobacterium vaccae acts like an antidepressant when injected into rodents. It alters their behavior and has lasting anti-inflammatory effects on the brain, according to the press release from the University of Colorado Boulder. Prolonged inflammation can lead to such stress-related disorders as PTSD.

The new study from Lowry and his team identified why that worked by pinpointing the specific fatty acid responsible. They showed that when the 10(Z)-hexadecenoic acid gets into cells, it works like a lock, attaching itself to the peroxisome proliferator-activated receptor (PPAR). This allows it to block a number of key pathways responsible for inflammation. Pre-treating the cells with the acid (or lipid) made them withstand inflammation better.

Lowry thinks this understanding can lead to creating a "stress vaccine" that can be given to people in high-stress jobs, like first responders or soldiers. The vaccine can prevent the psychological effects of stress.

What's more, this friendly bacterium is not the only potentially helpful organism we can find in soil.

"This is just one strain of one species of one type of bacterium that is found in the soil but there are millions of other strains in soils," said Lowry. "We are just beginning to see the tip of the iceberg in terms of identifying the mechanisms through which they have evolved to keep us healthy. It should inspire awe in all of us."

Check out the study published in the journal Psychopharmacology.