Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Denmark has the flattest work hierarchy in the world

"It's about having employees that are empowered."

Denmark has the flattest work hierarchy in the world
Photo by rawpixel on Unsplash

Denmark may be the birthplace of the Lego tower, but its workplace hierarchy is the flattest in the world.

According to the World Economic Forum's Global Competitiveness Report 2018, the nation tops an index measuring "willingness to delegate authority" at work, beating 139 other countries.


This will come as no surprise to foreign workers who can find the country's egalitarian approach a culture shock.

"People relate to one another as equals regardless of job titles and formal positions," notes the University of Southern Denmark in an article explaining the country's working culture.

"Many workplaces have what resembles a flat management hierarchy, which means it is more than normal to take up issues directly with the CEO. It is allowed to contradict or criticize managers."

This is backed up by data included in the Forum's new global competitiveness framework, which assesses how well countries are poised for the Fourth Industrial Revolution and ranks them on a wide range of factors.

Denmark also punches above its weight in the overall index, with its "very well-functioning labour markets, strong welfare state and active labour-market policies" propelling it to 10th place.

 Denmark ranks 10th overall in the Global Competitiveness Index 4.0. Image: Global Competitiveness Report 2018, World Economic Forum

"It's about having employees that are empowered," Thierry Geiger, head of research and regional impact at the Forum said in an interview. "If the structure is too rigid, where only the most senior people can speak, then you really stifle creativity. Maybe the next big idea or next improvement could be in the head of a new graduate who just joined. And if you don't create this space for those people to offer their ideas then it's a missed opportunity."

Denmark's labour market is as distinctive as its workplace culture. The small Nordic nation, which has one of the smallest rich-poor gaps in the world, aims to offer "flexicurity", or flexibility and security, to workers and companies. The culmination of many years of investment and policy making, flexicurity means lower job protection, but higher unemployment benefits if you do lose your job, combined with strong job-search assistance and training to help people back to work.

'Flexicurity' provides less job protection but more social security. Image: CESifo Group

The Forum's report also showed Denmark has one of the highest levels of social capital in the world and a well-educated workforce. The country placed 8th in a gauge of tech-ready economies that are braced for change and it scored well on metrics that assessed business dynamism, levels of trust and collaboration, and innovation.

The labour-market pillar of the new framework looks at the extent to which human resources can be reorganized and leveraged. Well-functioning labour markets make economies more resilient to shocks and incentivize workers to take risks, embrace change and focus on the future, the report said.

"Denmark comes very high when measured on these indicators," Geiger said. "Creativity, diversity and collaboration, all these things are very soft in nature but they are all about coming up with ideas, new approaches."

As well as Denmark, Australia, Canada, Finland, Norway, Sweden, Switzerland and the US also scored highly in this area.

Asian economies didn't score as well, since their companies tend to have a more rigid structure, Geiger said. For example, Hong Kong SAR scored 69 points out of 100 on this indicator, placing it almost 20 points behind the best performer. Singapore and Japan also showed room for improvement.

"It comes down to how you change corporate culture and attitudes toward risk," Geiger said. "These are factors that are built on long cultural and historical legacies and are hard to change. We want to make people aware of that and of the small things that can be done. It's about a willingness to accept failure."

Reprinted with permission of World Economic Forum. Read the original article here.

Radical innovation: Unlocking the future of human invention

Ready to see the future? Nanotronics CEO Matthew Putman talks innovation and the solutions that are right under our noses.

Big Think LIVE

Innovation in manufacturing has crawled since the 1950s. That's about to speed up.

Keep reading Show less

Your body’s full of stuff you no longer need. Here's a list.

Evolution doesn't clean up after itself very well.

Image source: Ernst Haeckel
Surprising Science
  • An evolutionary biologist got people swapping ideas about our lingering vestigia.
  • Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
  • Here are the six traits that inaugurated the fun.
Keep reading Show less

Quantum particles timed as they tunnel through a solid

A clever new study definitively measures how long it takes for quantum particles to pass through a barrier.

Image source: carlos castilla/Shutterstock
  • Quantum particles can tunnel through seemingly impassable barriers, popping up on the other side.
  • Quantum tunneling is not a new discovery, but there's a lot that's unknown about it.
  • By super-cooling rubidium particles, researchers use their spinning as a magnetic timer.

When it comes to weird behavior, there's nothing quite like the quantum world. On top of that world-class head scratcher entanglement, there's also quantum tunneling — the mysterious process in which particles somehow find their way through what should be impenetrable barriers.

Exactly why or even how quantum tunneling happens is unknown: Do particles just pop over to the other side instantaneously in the same way entangled particles interact? Or do they progressively tunnel through? Previous research has been conflicting.

That quantum tunneling occurs has not been a matter of debate since it was discovered in the 1920s. When IBM famously wrote their name on a nickel substrate using 35 xenon atoms, they used a scanning tunneling microscope to see what they were doing. And tunnel diodes are fast-switching semiconductors that derive their negative resistance from quantum tunneling.

Nonetheless, "Quantum tunneling is one of the most puzzling of quantum phenomena," says Aephraim Steinberg of the Quantum Information Science Program at Canadian Institute for Advanced Research in Toronto to Live Science. Speaking with Scientific American he explains, "It's as though the particle dug a tunnel under the hill and appeared on the other."

Steinberg is a co-author of a study just published in the journal Nature that presents a series of clever experiments that allowed researchers to measure the amount of time it takes tunneling particles to find their way through a barrier. "And it is fantastic that we're now able to actually study it in this way."

Frozen rubidium atoms

Image source: Viktoriia Debopre/Shutterstock/Big Think

One of the difficulties in ascertaining the time it takes for tunneling to occur is knowing precisely when it's begun and when it's finished. The authors of the new study solved this by devising a system based on particles' precession.

Subatomic particles all have magnetic qualities, and they spin, or "precess," like a top when they encounter an external magnetic field. With this in mind, the authors of the study decided to construct a barrier with a magnetic field, causing any particles passing through it to precess as they did so. They wouldn't precess before entering the field or after, so by observing and timing the duration of the particles' precession, the researchers could definitively identify the length of time it took them to tunnel through the barrier.

To construct their barrier, the scientists cooled about 8,000 rubidium atoms to a billionth of a degree above absolute zero. In this state, they form a Bose-Einstein condensate, AKA the fifth-known form of matter. When in this state, atoms slow down and can be clumped together rather than flying around independently at high speeds. (We've written before about a Bose-Einstein experiment in space.)

Using a laser, the researchers pusehd about 2,000 rubidium atoms together in a barrier about 1.3 micrometers thick, endowing it with a pseudo-magnetic field. Compared to a single rubidium atom, this is a very thick wall, comparable to a half a mile deep if you yourself were a foot thick.

With the wall prepared, a second laser nudged individual rubidium atoms toward it. Most of the atoms simply bounced off the barrier, but about 3% of them went right through as hoped. Precise measurement of their precession produced the result: It took them 0.61 milliseconds to get through.

Reactions to the study

Scientists not involved in the research find its results compelling.

"This is a beautiful experiment," according to Igor Litvinyuk of Griffith University in Australia. "Just to do it is a heroic effort." Drew Alton of Augustana University, in South Dakota tells Live Science, "The experiment is a breathtaking technical achievement."

What makes the researchers' results so exceptional is their unambiguity. Says Chad Orzel at Union College in New York, "Their experiment is ingeniously constructed to make it difficult to interpret as anything other than what they say." He calls the research, "one of the best examples you'll see of a thought experiment made real." Litvinyuk agrees: "I see no holes in this."

As for the researchers themselves, enhancements to their experimental apparatus are underway to help them learn more. "We're working on a new measurement where we make the barrier thicker," Steinberg said. In addition, there's also the interesting question of whether or not that 0.61-millisecond trip occurs at a steady rate: "It will be very interesting to see if the atoms' speed is constant or not."

Self-driving cars to race for $1.5 million at Indianapolis Motor Speedway ​

So far, 30 student teams have entered the Indy Autonomous Challenge, scheduled for October 2021.

Illustration of cockpit of a self-driving car

Indy Autonomous Challenge
Technology & Innovation
  • The Indy Autonomous Challenge will task student teams with developing self-driving software for race cars.
  • The competition requires cars to complete 20 laps within 25 minutes, meaning cars would need to average about 110 mph.
  • The organizers say they hope to advance the field of driverless cars and "inspire the next generation of STEM talent."
Keep reading Show less
Mind & Brain

The dangers of the chemical imbalance theory of depression

A new Harvard study finds that the language you use affects patient outcome.

Scroll down to load more…
Quantcast