Sleepwalking is the result of a survival mechanism gone awry

Why do some enter into such an irrational and potentially harmful state during sleep?

Japanese businessmen take naps on benches in Hibiya park, central Tokyo, 04 August 1994. (Photo credit should read YOSHIKAZU TSUNO/AFP/Getty Images)

Last night, most of us went to the safety and comfort of our beds before drifting off to a night’s sleep. For some, this was the last conscious action before an episode of sleepwalking. 

Recent research from Stanford University shows that up to 4 per cent of adults might have had such an experience. In fact, sleepwalking is on the rise, in part due to increased use of pharmacologically based sleep aids – notably Ambien. Often, the episodes are harmless. Take for example, Lee Hadwin, a Londoner whose professional artistic talent seems to be present and activated only while he sleeps.

Sometimes, of course, sleepwalking is dangerous. Somnambulists are in an irrational state during which they could harm themselves or others. Some extreme examples include the instance of the English teenager who in 2009 jumped eight metres out of her bedroom window, or the case of Kenneth Parks in Toronto, who in 1987 drove 23km and murdered his mother-in-law, all apparently while sleeping. Parks committed the act – if that’s the right word – despite an agreeable relationship with the victim and a lack of motive.

Why do some enter into such a potentially harmful state during sleep? One answer comes from studies suggesting that ‘sleepwalking’ might not be an appropriate term for what is going on; rather, primitive brain regions involved in emotional response (in the limbic system) and complex motor activity (within the cortex) remain in ‘active’ states that are difficult to distinguish from wakefulness. Such activity is characterised by ‘alpha wave’ patterns detected during electroencephalogram (EEG) recordings. At the same time, regions in the frontal cortex and hippocampus that control rationality and memory remain essentially dormant and unable to carry out their typical functions, manifesting a ‘delta wave’ pattern seen during classic sleep. It’s as though sleepwalking results when the brain doesn’t completely transition from sleep to wakefulness – it’s essentially stuck in a sleep-wake limbo.

‘The rational part of the brain is in a sleep-like state and does not exert its normal control over the limbic system and the motor system,’ explains the Italian neuroscientist Lino Nobili, a sleep researcher at Niguarda Hospital in Milan. ‘So behaviour is regulated by a kind of archaic survival system like the one that is activated during fight-or-flight.’

But why would our brains enter into such a mixed state, representative of neither wakefulness nor sleeping? We need a restful sleep – would it not be more beneficial if the brain went totally ‘comatose’ until that rest was achieved? When one considers our distant, pre-human ancestors, answers begin to take shape. For aeons, the safety provided by the spot where our predecessors chose to lay their heads for the night was, in many ways, compromised compared with the safety of our current bedroom spaces.

Other species employ such strategies as well. I’m reminded of a startling experience I had while hiking. As I was navigating the trail in the twilight, a deer jumped out from underneath the branches of a fallen tree and bolted off into the distance. I was amazed at how close I had come to it before it sprang into furious action – only a few metres. It likely had been asleep and, upon waking, realised the potential danger it was in. What struck me was how the deer seemed to be triggered for action, even while asleep. In fact, many animals can maintain brain activity required for survival during sleep. For example, frigate birds fly for days, even months, and maintain flight during sleep while travelling vast distances over an ocean.

The phenomenon is observed in humans too. On the first night in a new environment, research has shown, one hemisphere of our brain remains more active than the other during sleep – essentially maintaining a ‘vigilant mode’, able to respond to unfamiliar, potentially danger-signalling sounds.

Scientists now agree that bouts of localised wakeful-like activity in motor-related areas and the limbic system can occur without concurrent sleepwalking. In fact, these areas have been shown to have low arousal thresholds for activation. Surprisingly, despite their association with sleepwalking, these low thresholds have been considered an adaptive trait – a boon to survival. Throughout most of our extensive ancestry, this trait may have been selected for its survival value.  

‘During sleep, we can have an activation of the motor system, so although you are sleeping and not moving, the motor cortex can be in a wake-like state – ready to go,’ explains Nobili, who led the team that conducted the work. ‘If something really goes wrong and endangers you, you don’t need your frontal lobe’s rationality to escape. You need a motor system that is ready.’ In sleepwalking, however, this adaptive system has gone awry. ‘An external trigger that would normally produce a small arousal triggers a full-blown episode.’ 

Antonio Zadra, a professor of psychology at the University of Montreal in Canada, explains it like this: ‘Information is being filtered by your brain, which is still monitoring the background – what’s going on around the sleeper – and deciding what’s important. “Ok, so we are not going to wake up the sleeper” or “This is potentially threatening so we should.” But the process of going from sleep to wakefulness is, in sleepwalkers, dysfunctional, clearly.’

Despite evidence of localised activity during sleep in both human and non-human animal brains, sleepwalking is, among primates, apparently a uniquely human phenomenon. It stands to reason, therefore, that the selection pressure for this trait in our ancestors uniquely outweighed the cost.

Philip Jaekl

This article was originally published at Aeon and has been republished under Creative Commons.

A still from the film "We Became Fragments" by Luisa Conlon , Lacy Roberts and Hanna Miller, part of the Global Oneness Project library.

Photo: Luisa Conlon , Lacy Roberts and Hanna Miller / Global Oneness Project
Sponsored by Charles Koch Foundation
  • Stories are at the heart of learning, writes Cleary Vaughan-Lee, Executive Director for the Global Oneness Project. They have always challenged us to think beyond ourselves, expanding our experience and revealing deep truths.
  • Vaughan-Lee explains 6 ways that storytelling can foster empathy and deliver powerful learning experiences.
  • Global Oneness Project is a free library of stories—containing short documentaries, photo essays, and essays—that each contain a companion lesson plan and learning activities for students so they can expand their experience of the world.
Keep reading Show less

Four philosophers who realized they were completely wrong about things

Philosophers like to present their works as if everything before it was wrong. Sometimes, they even say they have ended the need for more philosophy. So, what happens when somebody realizes they were mistaken?

Sartre and Wittgenstein realize they were mistaken. (Getty Images)
Culture & Religion

Sometimes philosophers are wrong and admitting that you could be wrong is a big part of being a real philosopher. While most philosophers make minor adjustments to their arguments to correct for mistakes, others make large shifts in their thinking. Here, we have four philosophers who went back on what they said earlier in often radical ways. 

Keep reading Show less

5 charts reveal key racial inequality gaps in the US

The inequalities impact everything from education to health.

ANGELA WEISS/AFP via Getty Images
Politics & Current Affairs

America is experiencing some of its most widespread civil unrest in years following the death of George Floyd.

Keep reading Show less

Ask an astronomer: What makes neutron stars so special?

Astrophysicist Michelle Thaller talks ISS and why NICER is so important.

Michelle Thaller - Ask A Scientist - Nasa's NICER Mission FULL SCREENER
  • Being outside of Earth's atmosphere while also being able to look down on the planet is both a challenge and a unique benefit for astronauts conducting important and innovative experiments aboard the International Space Station.
  • NASA astrophysicist Michelle Thaller explains why one such project, known as NICER (Neutron star Interior Composition Explorer), is "one of the most amazing discoveries of the last year."
  • Researchers used x-ray light data from NICER to map the surface of neutrons (the spinning remnants of dead stars 10-50 times the mass of our sun). Thaller explains how this data can be used to create a clock more accurate than any on Earth, as well as a GPS device that can be used anywhere in the galaxy.
Scroll down to load more…