Gender is dead, long live gender: just what is ‘performativity’?

Gender is burdened by a lot of adjectives these days. It’s non-binary, it’s fluid, it’s ‘over’. According to the American rapper Young Thug, an artist at the helm of hip-hop who is known to occasionally wear dresses, ‘there’s no such thing as gender’ at all.

These descriptions share the common assumption that gender is mutable, not fixed. Most contemporary public conversations about what it means to be men and women will engage with some version of this thesis – a development that’s due, in large part, to the work of the American philosopher Judith Butler. Her theory of ‘performativity’ upended ideas about gender by shedding light on the many processes that produce it, and the theory’s far-reaching consequences are still widely misunderstood.

It’s unfortunate that popular culture often reduces performativity to the idea that ‘gender is a social construct’. This catchphrase sets the ‘social’ against the ‘natural’, and implies that gender is merely an artificial layer, encrusted by choice onto the supposedly more fundamental reality of sex. But Butler was careful to avoid arguing for a simple split between nature and culture, or sex and gender. For her, gender wasn’t predetermined by nature or biology, nor was it simply ‘made up’ by culture. Rather, Butler insisted that gender resides in repeated words and actions, words and actions that both shape and are shaped by the bodies of real, flesh-and-blood human beings. And crucially, such repetitions are rarely performed freely.

What’s at stake in performativity stretches into the minutiae of the everyday. I was recently on a road trip with a group of friends, and one woman observed that she always lets her partner, a man, drive her car instead of doing so herself. Such an acquiescence feels feminine, she said. The question Butler would want us to ask is: does my friend do this because she is a woman, or does the act itself contribute to making her so?

Although Butler is its most famous advocate, the concept of performativity is rooted in earlier observations about how language works. In the mid-1950s, the English philosopher J L Austin pointed out that language is often a way of accomplishing things in the world, not only a means of describing it. To make a promise, for example, is to do the promising, not just to say something about it. In How to Do Things with Words (1962), Austin described these types of statements, which entailed performing actions, as (you guessed it) ‘performatives’. This focus on the functionality of statements, not their truth or falsity, proved to be revolutionary, and the interdisciplinary enterprise of ‘speech act theory’ was born in its wake. In a wonderful way, the neologism did exactly what it was describing – it made things happen in the world.

Roughly 30 years later, Butler linked performativity to gender, making explicit reference to the American philosopher John Searle’s work on speech act theory. Butler was interested in Searle’s analysis of the way that performatives don’t simply do things, they also commit the people involved to future actions. For example, when a judge declares a case closed, she’s not simply ending the trial, she’s setting off a chain of events – plaintiffs will be acquitted or indicted, and the courtroom adjourned. What Searle noted is that, in order for a performative (the judge’s proclamation) to have any impact on the future, it has to adhere to certain conventions that have already been established. Society needs to accept the authority of the judge and the form of her declaration. A performative, then, is as much a repetition or re-creation of what’s expected as it is an act of individual agency.

It’s against this background that Butler provides her definition in Gender Trouble (1990): ‘gender proves to be performative – that is, constituting the identity it is purported to be’. The basic idea is that gender is created by the very words and actions that appear, superficially, to be simply describing it after the fact. Earlier, in a 1988 essay, Butler had likened gender to ‘an act [in a play] which has been rehearsed, much as a script survives the particular actors who make use of it, but which requires individual actors in order to be actualised and reproduced as reality once again’. Gender is not a thing so much as a process by which patterns of language and action come to repeat themselves.

Embedded within Butler’s concept are two key expansions upon ‘performative’ as Austin or Searle used it. For one, gender does not occur with language only: it’s very much about bodies doing things, such as shaking hands or wearing clothes. Secondly, performing gender is not something that is done by a pre-existing, unfettered individual. Here Butler is re-appropriating Friedrich Nietzsche’s argument in On the Genealogy of Morals (1887), that ‘there is no “being” behind doing … the deed is everything’. That is, gender is not a role that someone simply chooses whether or not to step into, a decision made by a detached, pre-social, conscious mind. Instead, the very identity of the actor is fashioned via the actions themselves – and these actions are often unconscious and at least partly coerced.

Take shaking hands, for example. A ‘masculine’ handshake between two male-identifying individuals is not really a choice, but rather a compulsion rooted in previous actions – both their physical performances (the firm clasp, the decisive shake) and the way they’re spoken or thought about as ‘masculine’ (‘Don’t trust a man with a limp handshake’; ‘He has a good, assertive grip’). There’s an unspoken choreography that moulds the encounter between two men – and indeed, the less it is thought about, the smoother it operates. The moment the performance is brought to the level of awareness is precisely when it comes to feel clunky and unnatural, because this reveals the fact that the sequence could have been executed differently. So, while gender is performed, Butler argues, it is not a truly voluntary performance. Rather, it is made to feel ‘natural’ by virtue of its banality and repetition. The handshake makes the man, not the other way around.

Butler’s claim that performativity precedes identity goes against the grain of Western metaphysics, which clings to the sovereignty of the free, rational individual. This idea is largely due to the 17th-century French philosopher René Descartes, who conceived of the mind as a stable foundation, an internal space that’s ontologically distinct from the body and the world. Butler’s conception of gender, however, suggests that we aren’t pre-existing Cartesian egos ‘constructing’ our gender through acts of will; nor do we ‘inhabit’ some biologically predetermined role. Rather, we’re embodied individuals, propagating particular ways of doing gender, often unthinkingly.

Intriguingly, there’s now the potential for performativity to be taken up in a modified form by cognitive scientists – especially those concerned with how the body and society affect the way we think. Take the relationship between poverty and brain plasticity, for example. The stress of living in poverty can alter physical brain structures in significant ways, such as shrinking the hippocampus. This can affect memory, emotion and other qualities that one might be otherwise tempted to attribute to individual ‘identity’. By adopting a more performative perspective, however, we can see how these neural, bodily structures at once produce and are produced by certain social and circumstantial scripts. Much like performativity does for gender, this approach suggests that the mind is not a pre-existing thing, but an ongoing achievement of an embodied organism, mutable and moulded by a broader context.

Performativity has become a catchword in the humanities, the social sciences and popular culture. In 2016, New York magazine went so far as to declare: ‘It’s Judith Butler’s World’. But while performativity has been developed in the context of gender, it has much deeper implications. It’s a way of making strange that which feels intuitive, of challenging us to take a second look at what appears self-evident. Performativity encourages us not only to see the world differently, but to imagine how we might do it differently. As the philosopher Alva Nöe puts it in Strange Tools: Art and Human Nature (2015): ‘it is our nature to acquire second natures’.

Will Fraker

This article was originally published at Aeon and has been republished under Creative Commons.

Related Articles

Why "nuclear pasta" is the strongest material in the universe

Through computationally intensive computer simulations, researchers have discovered that "nuclear pasta," found in the crusts of neutron stars, is the strongest material in the universe.

Accretion disk surrounding a neutron star. Credit: NASA
Surprising Science
  • The strongest material in the universe may be the whimsically named "nuclear pasta."
  • You can find this substance in the crust of neutron stars.
  • This amazing material is super-dense, and is 10 billion times harder to break than steel.

Superman is known as the "Man of Steel" for his strength and indestructibility. But the discovery of a new material that's 10 billion times harder to break than steel begs the question—is it time for a new superhero known as "Nuclear Pasta"? That's the name of the substance that a team of researchers thinks is the strongest known material in the universe.

Unlike humans, when stars reach a certain age, they do not just wither and die, but they explode, collapsing into a mass of neurons. The resulting space entity, known as a neutron star, is incredibly dense. So much so that previous research showed that the surface of a such a star would feature amazingly strong material. The new research, which involved the largest-ever computer simulations of a neutron star's crust, proposes that "nuclear pasta," the material just under the surface, is actually stronger.

The competition between forces from protons and neutrons inside a neutron star create super-dense shapes that look like long cylinders or flat planes, referred to as "spaghetti" and "lasagna," respectively. That's also where we get the overall name of nuclear pasta.

Caplan & Horowitz/arXiv

Diagrams illustrating the different types of so-called nuclear pasta.

The researchers' computer simulations needed 2 million hours of processor time before completion, which would be, according to a press release from McGill University, "the equivalent of 250 years on a laptop with a single good GPU." Fortunately, the researchers had access to a supercomputer, although it still took a couple of years. The scientists' simulations consisted of stretching and deforming the nuclear pasta to see how it behaved and what it would take to break it.

While they were able to discover just how strong nuclear pasta seems to be, no one is holding their breath that we'll be sending out missions to mine this substance any time soon. Instead, the discovery has other significant applications.

One of the study's co-authors, Matthew Caplan, a postdoctoral research fellow at McGill University, said the neutron stars would be "a hundred trillion times denser than anything on earth." Understanding what's inside them would be valuable for astronomers because now only the outer layer of such starts can be observed.

"A lot of interesting physics is going on here under extreme conditions and so understanding the physical properties of a neutron star is a way for scientists to test their theories and models," Caplan added. "With this result, many problems need to be revisited. How large a mountain can you build on a neutron star before the crust breaks and it collapses? What will it look like? And most importantly, how can astronomers observe it?"

Another possibility worth studying is that, due to its instability, nuclear pasta might generate gravitational waves. It may be possible to observe them at some point here on Earth by utilizing very sensitive equipment.

The team of scientists also included A. S. Schneider from California Institute of Technology and C. J. Horowitz from Indiana University.

Check out the study "The elasticity of nuclear pasta," published in Physical Review Letters.

How a huge, underwater wall could save melting Antarctic glaciers

Scientists think constructing a miles-long wall along an ice shelf in Antarctica could help protect the world's largest glacier from melting.

Image: NASA
Surprising Science
  • Rising ocean levels are a serious threat to coastal regions around the globe.
  • Scientists have proposed large-scale geoengineering projects that would prevent ice shelves from melting.
  • The most successful solution proposed would be a miles-long, incredibly tall underwater wall at the edge of the ice shelves.

The world's oceans will rise significantly over the next century if the massive ice shelves connected to Antarctica begin to fail as a result of global warming.

To prevent or hold off such a catastrophe, a team of scientists recently proposed a radical plan: build underwater walls that would either support the ice or protect it from warm waters.

In a paper published in The Cryosphere, Michael Wolovick and John Moore from Princeton and the Beijing Normal University, respectively, outlined several "targeted geoengineering" solutions that could help prevent the melting of western Antarctica's Florida-sized Thwaites Glacier, whose melting waters are projected to be the largest source of sea-level rise in the foreseeable future.

An "unthinkable" engineering project

"If [glacial geoengineering] works there then we would expect it to work on less challenging glaciers as well," the authors wrote in the study.

One approach involves using sand or gravel to build artificial mounds on the seafloor that would help support the glacier and hopefully allow it to regrow. In another strategy, an underwater wall would be built to prevent warm waters from eating away at the glacier's base.

The most effective design, according to the team's computer simulations, would be a miles-long and very tall wall, or "artificial sill," that serves as a "continuous barrier" across the length of the glacier, providing it both physical support and protection from warm waters. Although the study authors suggested this option is currently beyond any engineering feat humans have attempted, it was shown to be the most effective solution in preventing the glacier from collapsing.

Source: Wolovick et al.

An example of the proposed geoengineering project. By blocking off the warm water that would otherwise eat away at the glacier's base, further sea level rise might be preventable.

But other, more feasible options could also be effective. For example, building a smaller wall that blocks about 50% of warm water from reaching the glacier would have about a 70% chance of preventing a runaway collapse, while constructing a series of isolated, 1,000-foot-tall columns on the seafloor as supports had about a 30% chance of success.

Still, the authors note that the frigid waters of the Antarctica present unprecedently challenging conditions for such an ambitious geoengineering project. They were also sure to caution that their encouraging results shouldn't be seen as reasons to neglect other measures that would cut global emissions or otherwise combat climate change.

"There are dishonest elements of society that will try to use our research to argue against the necessity of emissions' reductions. Our research does not in any way support that interpretation," they wrote.

"The more carbon we emit, the less likely it becomes that the ice sheets will survive in the long term at anything close to their present volume."

A 2015 report from the National Academies of Sciences, Engineering, and Medicine illustrates the potentially devastating effects of ice-shelf melting in western Antarctica.

"As the oceans and atmosphere warm, melting of ice shelves in key areas around the edges of the Antarctic ice sheet could trigger a runaway collapse process known as Marine Ice Sheet Instability. If this were to occur, the collapse of the West Antarctic Ice Sheet (WAIS) could potentially contribute 2 to 4 meters (6.5 to 13 feet) of global sea level rise within just a few centuries."

Why the worst part about climate change isn't rising temperatures

The world's getting hotter, and it's getting more volatile. We need to start thinking about how climate change encourages conflict.

Christopher Furlong/Getty Images
Politics & Current Affairs
  • Climate change is usually discussed in terms of how it impacts the weather, but this fails to emphasize how climate change is a "threat multiplier."
  • As a threat multiplier, climate change makes already dangerous social and political situations even worse.
  • Not only do we have to work to minimize the impact of climate change on our environment, but we also have to deal with how it affects human issues today.

Human beings are great at responding to imminent and visible threats. Climate change, while dire, is almost entirely the opposite: it's slow, it's pervasive, it's vague, and it's invisible. Researchers and policymakers have been trying to package climate change in a way that conveys its severity. Usually, they do so by talking about its immediate effects: rising temperature, rising sea levels, and increasingly dangerous weather.

These things are bad, make no mistake about it. But the thing that makes climate change truly dire isn't that Cape Cod will be underwater next century, that polar bears will go extinct, or that we'll have to invent new categories for future hurricanes. It's the thousands of ancillary effects — the indirect pressure that climate change puts on every person on the planet.

How a drought in the Middle East contributed to extremism in Europe


Nigel Farage in front of a billboard that leverages the immigration crisis to support Brexit.

Because climate change is too big for the mind to grasp, we'll have to use a case study to talk about this. The Syrian civil war is a horrific tangle of senseless violence, but there are some primary causes we can point to. There is the longstanding conflicts between different religious sects in that country. Additionally, the Arab Spring swept Syria up in a wave of resistance against authoritarian leaders in the Middle East — unfortunately, Syrian protests were brutally squashed by Bashar Al-Assad. These, and many other factors, contributed to the start of the Syrian civil war.

One of these other factors was drought. In fact, the drought in that region — it started in 2006 — has been described as the "worst long-term drought and most severe set of crop failures since agricultural civilization began in the Fertile Crescent many millennia ago." Because of this drought, many rural Syrians could no longer support themselves. Between 2006 and 2009, an estimated 1.5 million Syrians — many of them agricultural workers and farmers — moved into the country's major cities. With this sudden mixing of different social groups in a country where classes and religious sects were already at odds with one another, tensions rose, and the increased economic instability encouraged chaos. Again, the drought didn't cause the civil war — but it sure as hell helped it along.

The ensuing flood of refugees to Europe is already a well-known story. The immigration crisis was used as a talking point in the Brexit movement to encourage Britain to leave the EU. Authoritarian or extreme-right governments and political parties have sprung up in France, Italy, Greece, Hungary, Slovenia, and other European countries, all of which have capitalized on fears of the immigration crisis.

Why climate change is a "threat multiplier"

This is why both NATO and the Pentagon have labeled climate change as a "threat multiplier." On its own, climate change doesn't cause these issues — rather, it exacerbates underlying problems in societies around the world. Think of having a heated discussion inside a slowly heating-up car.

Climate change is often discussed in terms of its domino effect: for example, higher temperatures around the world melt the icecaps, releasing methane stored in the polar ice that contributes to the rise in temperature, which both reduces available land for agriculture due to drought and makes parts of the ocean uninhabitable for different animal species, wreaking havoc on the food chain, and ultimately making food more scarce.

Maybe we should start to consider climate change's domino effect in more human and political terms. That is, in terms of the dominoes of sociopolitical events spurred on by climate change and the missing resources it gobbles up.

What the future may hold

(NASA via Getty Images)

Increasingly severe weather events will make it more difficult for nations to avoid conflict.

Part of why this is difficult to see is because climate change does not affect all countries proportionally — at least, not in a direct sense. Germanwatch, a German NGO, releases a climate change index every year to analyze exactly how badly different countries have been affected by climate change. The top five most at-risk countries are Haiti, Zimbabwe, Fiji, Sri Lanka, and Vietnam. Notice that many of these places are islands, which are at the greatest risk for major storms and rising sea levels. Some island nations are even expected to literally disappear — the leaders of these nations are actively making plans to move their citizens to other countries.

But Germanwatch's climate change index is based on weather events. It does not account for the political and social instability that will likely result. The U.S. and many parts of Europe are relatively low on the index, but that is precisely why these countries will most likely need to deal with the human cost of climate change. Refugees won't go from the frying pan into the fire: they'll go to the closest, safest place available.

Many people's instinctive response to floods of immigrants is to simply make borders more restrictive. This makes sense — a nation's first duty is to its own citizens, after all. Unfortunately, people who support stronger immigration policies tend to have right-wing authoritarian tendencies. This isn't always the case, of course, but anecdotally, we can look at the governments in Europe that have stricter immigration policies. Hungary, for example, has extremely strict policies against Muslim immigrants. It's also rapidly turning into a dictatorship. The country has cracked down on media organizations and NGOs, eroded its judicial system's independence, illegalized homelessness, and banned gender studies courses.

Climate change and its sociopolitical effects, such as refugee migration, aren't some poorer country's problem. It's everyone's problem. Whether it's our food, our homes, or our rights, climate change will exact a toll on every nation on Earth. Stopping climate change, or at least reducing its impact, is vitally important. Equally important is contending with the multifaceted threats its going to throw our way.