Wolfram Alpha: A Radically New Search Engine

Question: How does Wolfram Alpha work?

Stephen Wolfram: Well first thing is that we’ve collected a huge amount of data and we’ve curated this data, so it’s data where we’ve gone typically to sort of primary sources of data and made arrangements to get either the static data or a feed of data that comes in every minute, every second, every hour, whatever and we’ve organized this data so that it is sort of set up to be clean and computable, so that is sort of the first component is all this data that exists in the system, whether it’s about chemicals of countries or foods or nuclear isotopes or whatever else. Or financial data about companies or whatever, so all this data. 

Then sort of the second piece is given this data how do we figure things out?  How do we compute things?  It’s like you know if you ask a suitable scientist you know can you figure out for me you know something like where will the sun be at a particular time of day at a particular place on the earth.  You know if they can do their physics correctly they’ll eventually be able to figure out the answer. Or if you have this particular level of some substance in you know blood, what percentile of the distribution does this correspond to or what does that mean for the probability of this or that thing.

So these are things which sort of in principle can be computed if you find the right expert.  What we’ve tried to do is to actually accumulate all of the algorithms necessary to do those computations.  Typically that is done by talking to the world’s experts in these areas and encapsulating the knowledge that we get in the form of algorithms.  Well, then, another aspect of this is: "So okay, so we know all the stuff.  We can compute all these things.  How does a typical person who walks up to Wolfram Alpha…?  How do they communicate with it?"  So that is then another big challenge is to be able to take sort of the natural language questions, the kind of the first way that people would think of asking such and such a question and being able to automatically understand that and that is something that wasn’t clear whether it was going to possible. 

People have been trying to do kind of natural language processing with computers for decades and there has only been sort of slow progress in that in general.  It turned out the problem we had to solve is sort of the reverse of the problem people usually have to solve.  People usually have to solve the problem of you’re given you know thousands, millions of pages of text, go have the computer understand this.  Our problem was: we can compute a certain set of things and then we’re given this very short sort of utterance that the human has fed us and we have to ask the question can we understand that utterance and map it into the things that we can compute, so it’s turned out somewhat to my surprise actually that we’ve been able using a bunch of ideas about sort of computational linguistics and so on to make really great progress in being able to let one sort of type in things in whatever form one first thinks of them and having the computer understand them.

And then finally one has to figure out so there are all these things we can compute.  We’ve understood a question that has been asked.  There is all sorts of things that we can give as the answer.  Which parts of the things that we might give as the answer should we actually present?  How do we sort of present the right graphical tabular and so on results to actually communicate it in an effective way with humans who are using the system? 

So you know all the pieces we’ve managed to sort of pull them together and it all sort of has to be connected to sort of a big super-computer-type system, sort of big crunchy software engineering necessary to actually deliver results quickly to people on the Web and so on, but sort of the main objective here is sort of collect all this knowledge from our civilization, make it as much as possible computable, get it to the point where, sort of, if there is question that could be answered by some expert our system will be able to automatically answer that question.  So one is asking sort of a one might ask a very specific question you know, “What will be the value of this particular… I don’t know… annuity after this amount with these particular dollar values based on this thing about interest rates or whatever else it is?”  So that is something very specific.  It’s not sort of, give me a general essay about such and such a topic.  It’s I’ve got a specific question.  Give me a specific answer. 

Recorded July 26, 2010
Interviewed by Max Miller

Unlike search engines like Google or Bing, Wolfram Alpha actually computes new knowledge rather than searching through previously published material.

Related Articles

How does alcohol affect your brain?

Explore how alcohol affects your brain, from the first sip at the bar to life-long drinking habits.

(Photo by Angie Garrett/Wikimedia Commons)
Mind & Brain
  • Alcohol is the world's most popular drug and has been a part of human culture for at least 9,000 years.
  • Alcohol's effects on the brain range from temporarily limiting mental activity to sustained brain damage, depending on levels consumed and frequency of use.
  • Understanding how alcohol affects your brain can help you determine what drinking habits are best for you.
Keep reading Show less

Scientists sequence the genome of this threatened species

If you want to know what makes a Canadian lynx a Canadian lynx a team of DNA sequencers has figured that out.

Surprising Science
  • A team at UMass Amherst recently sequenced the genome of the Canadian lynx.
  • It's part of a project intending to sequence the genome of every vertebrate in the world.
  • Conservationists interested in the Canadian lynx have a new tool to work with.

If you want to know what makes a Canadian lynx a Canadian lynx, I can now—as of this month—point you directly to the DNA of a Canadian lynx, and say, "That's what makes a lynx a lynx." The genome was sequenced by a team at UMass Amherst, and it's one of 15 animals whose genomes have been sequenced by the Vertebrate Genomes Project, whose stated goal is to sequence the genome of all 66,000 vertebrate species in the world.

Sequencing the genome of a particular species of an animal is important in terms of preserving genetic diversity. Future generations don't necessarily have to worry about our memory of the Canadian Lynx warping the way hearsay warped perception a long time ago.

elephant by Guillaume le Clerc

Artwork: Guillaume le Clerc / Wikimedia Commons

13th-century fantastical depiction of an elephant.

It is easy to see how one can look at 66,000 genomic sequences stored away as being the analogous equivalent of the Svalbard Global Seed Vault. It is a potential tool for future conservationists.

But what are the practicalities of sequencing the genome of a lynx beyond engaging with broad bioethical questions? As the animal's habitat shrinks and Earth warms, the Canadian lynx is demonstrating less genetic diversity. Cross-breeding with bobcats in some portions of the lynx's habitat also represents a challenge to the lynx's genetic makeup. The two themselves are also linked: warming climates could drive Canadian lynxes to cross-breed with bobcats.

John Organ, chief of the U.S. Geological Survey's Cooperative Fish and Wildlife units, said to MassLive that the results of the sequencing "can help us look at land conservation strategies to help maintain lynx on the landscape."

What does DNA have to do with land conservation strategies? Consider the fact that the food found in a landscape, the toxins found in a landscape, or the exposure to drugs can have an impact on genetic activity. That potential change can be transmitted down the generative line. If you know exactly how a lynx's DNA is impacted by something, then the environment they occupy can be fine-tuned to meet the needs of the lynx and any other creature that happens to inhabit that particular portion of the earth.

Given that the Trump administration is considering withdrawing protection for the Canadian lynx, a move that caught scientists by surprise, it is worth having as much information on hand as possible for those who have an interest in preserving the health of this creature—all the way down to the building blocks of a lynx's life.

Why cauliflower is perfect for the keto diet

The exploding popularity of the keto diet puts a less used veggie into the spotlight.

Purple cauliflower. (Photo: Shutterstock)
Surprising Science
  • The cauliflower is a vegetable of choice if you're on the keto diet.
  • The plant is low in carbs and can replace potatoes, rice and pasta.
  • It can be eaten both raw and cooked for different benefits.
Keep reading Show less