The Link Between Cancer and Aging

Siddhartha Mukherjee: Here is another provocative question. Some cancers such as prostate cancer are age related clearly, whereas other cancers are not. Acute lymphoblastic leukemia arises in children. Why is it that only some cancers are age related and other cancers are not age related, Dr. Schrag, Dr. Schwartzentruber, clinicians?

Doug Schwartzentruber: I don’t have a good answer for you. We do know that the immune system is differently developed at various stages in life and that may be one clue that now the host factors, as you deposit a tumor or a cancer in that patient may behave differently through ages, but I’d look to epidemiologists to give us an answer. [00:56:39.06]

Deborah Schrag: We don’t know. I mean we know that for example, for some types of leukemia as you well know folks are born with predisposing mutations and there is sort of the idea of there being a second hit or multiple additional hits and these exposures may occur at different points in the lifestyle, so at different points across the lifespan, so for example, if hormonal environment is very important. Perhaps it’s not a surprise that we don’t see prostate cancer in adolescent boys. We never see prostate cancer in adolescent boys, so that right there is telling us something, but there is more here that we don’t know. Epidemiologists try to figure this out, try to understand this. We know that Hodgkin’s disease; there is a few diseases that have two peaks, testicular cancer and Hodgkin’s disease. Both have what we call a bimodal distribution. They’ve got a peak around the teenage years and then there is another late peak in the 50s and 60s. The diseases sort of look that same at the moment under the microscope, but are they really the same? Probably not, we’re not quite there yet, but there is some tantalizing clues. [00:57:50.03]

Harold Varmus: I think there is- it’s worth thinking about one problem that most scientists have not focused on. That is, what is the cell in any organ? Every organ is made up of cells in lineages, stem cells and intermediate stage cells and the most mature, highly functional cells and we don’t know in the vast majority of cancers which cell is actually the target cell for developing a cancer. If we knew the abundance of those cell types and the number of cell divisions they go through and the likelihood they’re exposed to mutagenic events I think we begin to get a better picture. For example, one way to think about this is a disease called retinoblastoma, largely a hereditary disease that requires one additional mutation is only seen in kids up to the age of six and we know the target cell for that disease, the retinoblast disappears in the eye, so there is no target cell anymore and that is why the disease occurs early in life. You could argue that in contrast a disease like prostate cancer arises in an organ that has a certain number of stem cells throughout life and you’re just waiting for mutations to accumulate as they continue to do throughout life and the disease gets more frequent with increasing age.

Siddhartha Mukherjee: And breast cancer for instance, we know that the length of hormone exposure, estrogen exposure is critically important, so you need so many years of hormone exposure before you finally get your malignant cell.

Lewis Cantley: Yeah and I think the example I gave earlier of these rare heart cancers that appear even before birth, but then disappear, so I think those examples and probably the other examples we heard of where you get this bimodal event are probably driven early, the early event is probably driven by some hormonal environment, some growth factor hormone is peaking at that stage as you go through puberty for example and that is actually substituting for one of what would otherwise be a mutation required, so now you only need on mutation plus a high level of that hormone and that drives it at that stage. The older form is probably mutations that are replacing the need for the hormone coming up with age, so they’re less probable to take longer to appear, but ultimately result in a similar disease. 

Medical science has developed a greater awareness of the link between hormonal changes and cancer. Could this information explain not just why we get the disease, but when?

Related Articles

Major study: Drug overdoses over a 38-year period reveal hidden trends

It's just the current cycle that involves opiates, but methamphetamine, cocaine, and others have caused the trajectory of overdoses to head the same direction

From the study:
Surprising Science
  • It appears that overdoses are increasing exponentially, no matter the drug itself
  • If the study bears out, it means that even reducing opiates will not slow the trajectory.
  • The causes of these trends remain obscure, but near the end of the write-up about the study, a hint might be apparent
Keep reading Show less

Why "nuclear pasta" is the strongest material in the universe

Through computationally intensive computer simulations, researchers have discovered that "nuclear pasta," found in the crusts of neutron stars, is the strongest material in the universe.

Accretion disk surrounding a neutron star. Credit: NASA
Surprising Science
  • The strongest material in the universe may be the whimsically named "nuclear pasta."
  • You can find this substance in the crust of neutron stars.
  • This amazing material is super-dense, and is 10 billion times harder to break than steel.

Superman is known as the "Man of Steel" for his strength and indestructibility. But the discovery of a new material that's 10 billion times harder to break than steel begs the question—is it time for a new superhero known as "Nuclear Pasta"? That's the name of the substance that a team of researchers thinks is the strongest known material in the universe.

Unlike humans, when stars reach a certain age, they do not just wither and die, but they explode, collapsing into a mass of neurons. The resulting space entity, known as a neutron star, is incredibly dense. So much so that previous research showed that the surface of a such a star would feature amazingly strong material. The new research, which involved the largest-ever computer simulations of a neutron star's crust, proposes that "nuclear pasta," the material just under the surface, is actually stronger.

The competition between forces from protons and neutrons inside a neutron star create super-dense shapes that look like long cylinders or flat planes, referred to as "spaghetti" and "lasagna," respectively. That's also where we get the overall name of nuclear pasta.

Caplan & Horowitz/arXiv

Diagrams illustrating the different types of so-called nuclear pasta.

The researchers' computer simulations needed 2 million hours of processor time before completion, which would be, according to a press release from McGill University, "the equivalent of 250 years on a laptop with a single good GPU." Fortunately, the researchers had access to a supercomputer, although it still took a couple of years. The scientists' simulations consisted of stretching and deforming the nuclear pasta to see how it behaved and what it would take to break it.

While they were able to discover just how strong nuclear pasta seems to be, no one is holding their breath that we'll be sending out missions to mine this substance any time soon. Instead, the discovery has other significant applications.

One of the study's co-authors, Matthew Caplan, a postdoctoral research fellow at McGill University, said the neutron stars would be "a hundred trillion times denser than anything on earth." Understanding what's inside them would be valuable for astronomers because now only the outer layer of such starts can be observed.

"A lot of interesting physics is going on here under extreme conditions and so understanding the physical properties of a neutron star is a way for scientists to test their theories and models," Caplan added. "With this result, many problems need to be revisited. How large a mountain can you build on a neutron star before the crust breaks and it collapses? What will it look like? And most importantly, how can astronomers observe it?"

Another possibility worth studying is that, due to its instability, nuclear pasta might generate gravitational waves. It may be possible to observe them at some point here on Earth by utilizing very sensitive equipment.

The team of scientists also included A. S. Schneider from California Institute of Technology and C. J. Horowitz from Indiana University.

Check out the study "The elasticity of nuclear pasta," published in Physical Review Letters.

How a huge, underwater wall could save melting Antarctic glaciers

Scientists think constructing a miles-long wall along an ice shelf in Antarctica could help protect the world's largest glacier from melting.

Image: NASA
Surprising Science
  • Rising ocean levels are a serious threat to coastal regions around the globe.
  • Scientists have proposed large-scale geoengineering projects that would prevent ice shelves from melting.
  • The most successful solution proposed would be a miles-long, incredibly tall underwater wall at the edge of the ice shelves.

The world's oceans will rise significantly over the next century if the massive ice shelves connected to Antarctica begin to fail as a result of global warming.

To prevent or hold off such a catastrophe, a team of scientists recently proposed a radical plan: build underwater walls that would either support the ice or protect it from warm waters.

In a paper published in The Cryosphere, Michael Wolovick and John Moore from Princeton and the Beijing Normal University, respectively, outlined several "targeted geoengineering" solutions that could help prevent the melting of western Antarctica's Florida-sized Thwaites Glacier, whose melting waters are projected to be the largest source of sea-level rise in the foreseeable future.

An "unthinkable" engineering project

"If [glacial geoengineering] works there then we would expect it to work on less challenging glaciers as well," the authors wrote in the study.

One approach involves using sand or gravel to build artificial mounds on the seafloor that would help support the glacier and hopefully allow it to regrow. In another strategy, an underwater wall would be built to prevent warm waters from eating away at the glacier's base.

The most effective design, according to the team's computer simulations, would be a miles-long and very tall wall, or "artificial sill," that serves as a "continuous barrier" across the length of the glacier, providing it both physical support and protection from warm waters. Although the study authors suggested this option is currently beyond any engineering feat humans have attempted, it was shown to be the most effective solution in preventing the glacier from collapsing.

Source: Wolovick et al.

An example of the proposed geoengineering project. By blocking off the warm water that would otherwise eat away at the glacier's base, further sea level rise might be preventable.

But other, more feasible options could also be effective. For example, building a smaller wall that blocks about 50% of warm water from reaching the glacier would have about a 70% chance of preventing a runaway collapse, while constructing a series of isolated, 1,000-foot-tall columns on the seafloor as supports had about a 30% chance of success.

Still, the authors note that the frigid waters of the Antarctica present unprecedently challenging conditions for such an ambitious geoengineering project. They were also sure to caution that their encouraging results shouldn't be seen as reasons to neglect other measures that would cut global emissions or otherwise combat climate change.

"There are dishonest elements of society that will try to use our research to argue against the necessity of emissions' reductions. Our research does not in any way support that interpretation," they wrote.

"The more carbon we emit, the less likely it becomes that the ice sheets will survive in the long term at anything close to their present volume."

A 2015 report from the National Academies of Sciences, Engineering, and Medicine illustrates the potentially devastating effects of ice-shelf melting in western Antarctica.

"As the oceans and atmosphere warm, melting of ice shelves in key areas around the edges of the Antarctic ice sheet could trigger a runaway collapse process known as Marine Ice Sheet Instability. If this were to occur, the collapse of the West Antarctic Ice Sheet (WAIS) could potentially contribute 2 to 4 meters (6.5 to 13 feet) of global sea level rise within just a few centuries."