The Future of Quantum Computing

Question: Will quantum computing make self-aware AI more likely? (Submitted by Antonio Amorelli)

Michio Kaku:  Antonio, quantum computers is the wildcard.  It could be a game changer.  It could change the entire landscape of artificial intelligence.  Let me explain.  At the present time, our most advanced robots, some of which are built in Japan and also at MIT have the collective intelligence and wisdom of a cockroach; a mentally challenged cockroach; a lobotomized, mentally challenged cockroach.  These cockroaches take about six hours to walk across the room.  They enter a room.  They see lines, circles, squares, triangles, but they don’t know the fact that they’re looking at chairs, desks, tables, people, lamps.  They see better than us.  They don’t know what they are seeing.  Also they hear better than us, but they don’t understand what they are hearing. So we need a new architecture and then, in 10 years, silicon power may run its course and the silicon revolution may actually collapse.  We’re used to the fact that computers double in power every 18 months.  That can’t go on forever.  Moore’s Law, which is the foundation of modern society, may eventually collapse in 10, 15 years, so we physicists are looking for a replacement. A replacement, molecular computers, atomic computers, optical computers and quantum computers.

Quantum computers compute on atoms, not silicon.  They are as small as you can get in terms of information storage—you can’t get smaller than an individual electron—and they work by looking at the spin, at the orientation of electrons.  If I put an electron in a magnetic field, it can spin up or it can spin down.  That would be a one and that would be a zero. But in quantum mechanics it could also be in between zero and one, so a bit one, a bit zero could become a Q bit, anything between zero and one.  Now, to be fair, the world’s record for a quantum computer calculation is: three times five is fifteen.  Now you probably already knew that: three times five is fifteen. But remember that calculation was done on five atoms, so here is a homework assignment for you.  Take five atoms and make a computation three times five is fifteen and then you begin to realize how difficult it is to make quantum computers.  The problem is interference.  Cosmic rays, a rumbling truck outside your door, small tremors in the earth, they create vibrations sufficient to destroy the spin of the electron. And that is the problem.  That is the reason why we don’t have quantum computers. And remember if you can solve this problem, if you can create a quantum computer that computes on individual atoms and electrons you would be heralded as the next Thomas Edison.

Recorded September 29, 2010
Interviewed by Paul Hoffman

Today's robots are less intelligent than cockroaches, but advances in quantum computing—transferring information using atoms rather than silicon—could revolutionize the field of AI.

Related Articles

Scientists discover what caused the worst mass extinction ever

How a cataclysm worse than what killed the dinosaurs destroyed 90 percent of all life on Earth.

Credit: Ron Miller
Surprising Science

While the demise of the dinosaurs gets more attention as far as mass extinctions go, an even more disastrous event called "the Great Dying” or the “End-Permian Extinction” happened on Earth prior to that. Now scientists discovered how this cataclysm, which took place about 250 million years ago, managed to kill off more than 90 percent of all life on the planet.

Keep reading Show less

Why we're so self-critical of ourselves after meeting someone new

A new study discovers the “liking gap” — the difference between how we view others we’re meeting for the first time, and the way we think they’re seeing us.

New acquaintances probably like you more than you think. (Photo by Simone Joyner/Getty Images)
Surprising Science

We tend to be defensive socially. When we meet new people, we’re often concerned with how we’re coming off. Our anxiety causes us to be so concerned with the impression we’re creating that we fail to notice that the same is true of the other person as well. A new study led by Erica J. Boothby, published on September 5 in Psychological Science, reveals how people tend to like us more in first encounters than we’d ever suspect.

Keep reading Show less

NASA launches ICESat-2 into orbit to track ice changes in Antarctica and Greenland

Using advanced laser technology, scientists at NASA will track global changes in ice with greater accuracy.

Firing three pairs of laser beams 10,000 times per second, the ICESat-2 satellite will measure how long it takes for faint reflections to bounce back from ground and sea ice, allowing scientists to measure the thickness, elevation and extent of global ice
popular

Leaving from Vandenberg Air Force base in California this coming Saturday, at 8:46 a.m. ET, the Ice, Cloud, and Land Elevation Satellite-2 — or, the "ICESat-2" — is perched atop a United Launch Alliance Delta II rocket, and when it assumes its orbit, it will study ice layers at Earth's poles, using its only payload, the Advance Topographic Laser Altimeter System (ATLAS).

Keep reading Show less