Saving the “Jenga Towers” of Human Cells

Question: What obstacles does the unique genetic composition of human cancers pose to treatment, and how can they be overcome?

\r\n

Gregory Hannon: Although each cancer is unique, there are certain core pathways, biological modules in essence, that are altered in nearly every cancer cell.  And the number of those modules expands as one gets more specific to a particular subtype; let’s say estrogen receptor positive breast cancer.  So, the notion, and this is one of the ways in which RNAi is being deployed very powerfully, is to try to correlate the vulnerabilities that are created by the inactivation in those individual biological models and then exploit that vulnerability for therapy.  The way that you can think about this is that cells are designed or evolve to be robust.  And every time you take away one of these biological modules, these pathways, it affects the robustness of cells.  Think about a Jenga tower, and you’re pulling blocks out of a Jenga tower.  The more blocks that you pull out, the easier it is to make that tower fall.  And what people are doing with RNAi is trying to figure out precisely what additional block to pull out to make that tower fall.  Where the tower wouldn’t fall if one had a normal cell which essentially has homeostatic mechanisms to be robust, to resist the biological difficulties that would be created by the loss of the pathway that would represent that key therapeutic target.  So, the idea is to exploit common aspects of the genetics to create therapies that overcome the individuality of the disease.

Recorded on February 9, 2010

Interviewed by Austin Allen

Finding the common point of vulnerability that makes threatened cells collapse may help science overcome the troublesome uniqueness of human cancers.

Related Articles

Scientists discover what caused the worst mass extinction ever

How a cataclysm worse than what killed the dinosaurs destroyed 90 percent of all life on Earth.

Credit: Ron Miller
Surprising Science

While the demise of the dinosaurs gets more attention as far as mass extinctions go, an even more disastrous event called "the Great Dying” or the “End-Permian Extinction” happened on Earth prior to that. Now scientists discovered how this cataclysm, which took place about 250 million years ago, managed to kill off more than 90 percent of all life on the planet.

Keep reading Show less

Why we're so self-critical of ourselves after meeting someone new

A new study discovers the “liking gap” — the difference between how we view others we’re meeting for the first time, and the way we think they’re seeing us.

New acquaintances probably like you more than you think. (Photo by Simone Joyner/Getty Images)
Surprising Science

We tend to be defensive socially. When we meet new people, we’re often concerned with how we’re coming off. Our anxiety causes us to be so concerned with the impression we’re creating that we fail to notice that the same is true of the other person as well. A new study led by Erica J. Boothby, published on September 5 in Psychological Science, reveals how people tend to like us more in first encounters than we’d ever suspect.

Keep reading Show less

NASA launches ICESat-2 into orbit to track ice changes in Antarctica and Greenland

Using advanced laser technology, scientists at NASA will track global changes in ice with greater accuracy.

Firing three pairs of laser beams 10,000 times per second, the ICESat-2 satellite will measure how long it takes for faint reflections to bounce back from ground and sea ice, allowing scientists to measure the thickness, elevation and extent of global ice
popular

Leaving from Vandenberg Air Force base in California this coming Saturday, at 8:46 a.m. ET, the Ice, Cloud, and Land Elevation Satellite-2 — or, the "ICESat-2" — is perched atop a United Launch Alliance Delta II rocket, and when it assumes its orbit, it will study ice layers at Earth's poles, using its only payload, the Advance Topographic Laser Altimeter System (ATLAS).

Keep reading Show less