Atheism vs. Religion: Which Is the Healthier Viewpoint?

What does Robert Sapolsky—an "utter, complete, atheist"—think about the persistence of magical thinking in our modern world?

Robert Sapolsky: So when you look at the really unique bizarre things humans have come up with, ranging from cave paintings to Snapchats and everything in between, probably the most unique and universal thing we’ve come up with is this religion business. We talk about the symbolic metaphorical thinking.

Essentially there has been no culture on earth that has not invented some form of what could be termed “meta-magical thinking,” attributing things that cannot be seen, faith-based belief systems, things of that sort. It’s universal, and 90-95 percent of people believe in some sort of omnipotent something or other out there. Every culture has it. People have endlessly speculated about the evolution of religiosity, and at least in terms of westernized religions it makes perfect sense why they’ve evolved: Because they’re wonderful mechanisms for reducing stress. It is an awful, terrifying world out there where bad things happen and we’re all going to die eventually. And believing that there is something, someone responsible for it at least gives some stress reducing attributes built around understanding causality. If on top of that you believe there is not only something out there responsible for all of this but that there is a larger purpose to it, that’s another level of stress reducing explanation.

If then on top of it you believe that individual out there is benevolent—even more so control and predictability. Benevolent and listens to human entreaties? More elements of control.

Benevolent, listens to human entreaties, and prefers to listen to people like you who look like you, pray like you, request like you? Even more so. They’re just all these levels of control, predictability; they’re stress reducing.

And what is infuriating to me as an utter, complete atheist is a very, very solid literature showing the health benefits of religiosity, independent of: you tend to get a social supportive community. When you’re religious you have fewer lifestyle risk factors. The mere ability to perceive causality, reason, benevolence—“Benevolence especially for people like me if I say the right combination of words and fervently believe in it”—that’s wonderfully protective and there’s health benefits to it.

If it is a totally heartless indifferent apathetic universe out there you are far more at risk for all the logical things which is to conclude it is an utterly depressing universe out there.

Rates of depression are much higher among atheists… Go figure.

So in terms of that it makes perfect sense why this is something that people have come up with and rather than asking why is it that 95 percent of humans come up with some form of religiosity, a much more biologically interesting question to me is: What’s up with the five percent of atheists who don’t do that?

 

Of all the strange things that humans have come up with, almost none is stranger—nor more pervasive across separate cultures—than religion. Why this meta-magical thinking evolved is easy to understand in hindsight: Robert Sapolsky calls it a "wonderful mechanism" that our ancestors used to cope with forces of nature, tragedies, and good luck that they couldn't explain. And even in the presence of explanations today, it continues to be useful for the majority of humans, to the point that asking "Why do so many people still believe?" is not the most interesting question in the vicinity. Sapolsky would rather ask: "What’s up with the five percent of atheists who don’t?" The only thing crazier than religion might be atheism, he suggests. There's a solid catalog of literature that shows the health benefits of religiosity. It's nature's antidepressant for what is often a brutal and awful world, and offers a protective quality that atheists forfeit—which explains why incidences of depression are much higher in that group. To Sapolsky, what's more curious than the bizarre need to believe, is the choice not to.

Harvard study finds perfect blend of fruits and vegetables to lower risk of death

Eating veggies is good for you. Now we can stop debating how much we should eat.

Credit: Pixabay
Surprising Science
  • A massive new study confirms that five servings of fruit and veggies a day can lower the risk of death.
  • The maximum benefit is found at two servings of fruit and three of veggies—anything more offers no extra benefit according to the researchers.
  • Not all fruits and veggies are equal. Leafy greens are better for you than starchy corn and potatoes.
Keep reading Show less

Cephalopod aces 'marshmallow test' designed for eager children

The famous cognition test was reworked for cuttlefish. They did better than expected.

Credit: Hans Hillewaert via Wikicommons
Surprising Science
  • Scientists recently ran the Stanford marshmallow experiment on cuttlefish and found they were pretty good at it.
  • The test subjects could wait up to two minutes for a better tasting treat.
  • The study suggests cuttlefish are smarter than you think but isn't the final word on how bright they are.
Keep reading Show less

A landslide is imminent and so is its tsunami

An open letter predicts that a massive wall of rock is about to plunge into Barry Arm Fjord in Alaska.

Image source: Christian Zimmerman/USGS/Big Think
Surprising Science
  • A remote area visited by tourists and cruises, and home to fishing villages, is about to be visited by a devastating tsunami.
  • A wall of rock exposed by a receding glacier is about crash into the waters below.
  • Glaciers hold such areas together — and when they're gone, bad stuff can be left behind.

The Barry Glacier gives its name to Alaska's Barry Arm Fjord, and a new open letter forecasts trouble ahead.

Thanks to global warming, the glacier has been retreating, so far removing two-thirds of its support for a steep mile-long slope, or scarp, containing perhaps 500 million cubic meters of material. (Think the Hoover Dam times several hundred.) The slope has been moving slowly since 1957, but scientists say it's become an avalanche waiting to happen, maybe within the next year, and likely within 20. When it does come crashing down into the fjord, it could set in motion a frightening tsunami overwhelming the fjord's normally peaceful waters .

"It could happen anytime, but the risk just goes way up as this glacier recedes," says hydrologist Anna Liljedahl of Woods Hole, one of the signatories to the letter.

The Barry Arm Fjord

Camping on the fjord's Black Sand Beach

Image source: Matt Zimmerman

The Barry Arm Fjord is a stretch of water between the Harriman Fjord and the Port Wills Fjord, located at the northwest corner of the well-known Prince William Sound. It's a beautiful area, home to a few hundred people supporting the local fishing industry, and it's also a popular destination for tourists — its Black Sand Beach is one of Alaska's most scenic — and cruise ships.

Not Alaska’s first watery rodeo, but likely the biggest

Image source: whrc.org

There have been at least two similar events in the state's recent history, though not on such a massive scale. On July 9, 1958, an earthquake nearby caused 40 million cubic yards of rock to suddenly slide 2,000 feet down into Lituya Bay, producing a tsunami whose peak waves reportedly reached 1,720 feet in height. By the time the wall of water reached the mouth of the bay, it was still 75 feet high. At Taan Fjord in 2015, a landslide caused a tsunami that crested at 600 feet. Both of these events thankfully occurred in sparsely populated areas, so few fatalities occurred.

The Barry Arm event will be larger than either of these by far.

"This is an enormous slope — the mass that could fail weighs over a billion tonnes," said geologist Dave Petley, speaking to Earther. "The internal structure of that rock mass, which will determine whether it collapses, is very complex. At the moment we don't know enough about it to be able to forecast its future behavior."

Outside of Alaska, on the west coast of Greenland, a landslide-produced tsunami towered 300 feet high, obliterating a fishing village in its path.

What the letter predicts for Barry Arm Fjord

Moving slowly at first...

Image source: whrc.org

"The effects would be especially severe near where the landslide enters the water at the head of Barry Arm. Additionally, areas of shallow water, or low-lying land near the shore, would be in danger even further from the source. A minor failure may not produce significant impacts beyond the inner parts of the fiord, while a complete failure could be destructive throughout Barry Arm, Harriman Fiord, and parts of Port Wells. Our initial results show complex impacts further from the landslide than Barry Arm, with over 30 foot waves in some distant bays, including Whittier."

The discovery of the impeding landslide began with an observation by the sister of geologist Hig Higman of Ground Truth, an organization in Seldovia, Alaska. Artist Valisa Higman was vacationing in the area and sent her brother some photos of worrying fractures she noticed in the slope, taken while she was on a boat cruising the fjord.

Higman confirmed his sister's hunch via available satellite imagery and, digging deeper, found that between 2009 and 2015 the slope had moved 600 feet downhill, leaving a prominent scar.

Ohio State's Chunli Dai unearthed a connection between the movement and the receding of the Barry Glacier. Comparison of the Barry Arm slope with other similar areas, combined with computer modeling of the possible resulting tsunamis, led to the publication of the group's letter.

While the full group of signatories from 14 organizations and institutions has only been working on the situation for a month, the implications were immediately clear. The signers include experts from Ohio State University, the University of Southern California, and the Anchorage and Fairbanks campuses of the University of Alaska.

Once informed of the open letter's contents, the Alaska's Department of Natural Resources immediately released a warning that "an increasingly likely landslide could generate a wave with devastating effects on fishermen and recreationalists."

How do you prepare for something like this?

Image source: whrc.org

The obvious question is what can be done to prepare for the landslide and tsunami? For one thing, there's more to understand about the upcoming event, and the researchers lay out their plan in the letter:

"To inform and refine hazard mitigation efforts, we would like to pursue several lines of investigation: Detect changes in the slope that might forewarn of a landslide, better understand what could trigger a landslide, and refine tsunami model projections. By mapping the landslide and nearby terrain, both above and below sea level, we can more accurately determine the basic physical dimensions of the landslide. This can be paired with GPS and seismic measurements made over time to see how the slope responds to changes in the glacier and to events like rainstorms and earthquakes. Field and satellite data can support near-real time hazard monitoring, while computer models of landslide and tsunami scenarios can help identify specific places that are most at risk."

In the letter, the authors reached out to those living in and visiting the area, asking, "What specific questions are most important to you?" and "What could be done to reduce the danger to people who want to visit or work in Barry Arm?" They also invited locals to let them know about any changes, including even small rock-falls and landslides.

If we do find alien life, what kind will it be?

Three lines of evidence point to the idea of complex, multicellular alien life being a wild goose chase. But are we clever enough to know?

Credit: "Mars Attacks!" / Warner Bros
13-8
  • Everyone wants to know if there is alien life in the universe, but Earth may give us clues that if it exists it may not be the civilization-building kind.
  • Most of Earth's history shows life that is single-celled. That doesn't mean it was simple, though. Stunning molecular machines were being evolved by those tiny critters.
  • What's in a planet's atmosphere may also determine what evolution can produce. Is there a habitable zone for complex life that's much smaller than what's allowed for microbes?
Keep reading Show less
Quantcast