"Our Grandchildren Will Not Live as Long as We Do"

Question: What are the biggest health risks facing America?

Francis Collins: If you look at health in the United States, you could point to some really significant achievements and you could also point to the role that NIH has played in making those things happen; cardiovascular disease has dropped by more than 60% in mortality over the course of the last 30 to 40 years, much of it from insights derived from groups like the Framingham Study which pointed out what the risk factors were and what we could do about them.  Cancer is dropping in its frequency, finally, after many years of going up.  

But there are clouds on the horizon of public heath, obesity and it’s related disease, diabetes, probably is the one that causes the greatest concern when you see the way in which our population is growing more overweight almost year by year with no sign that we’ve managed to turn this around.  And that could, if not somehow addressed, result in an outcome where our grandchildren will not live as long as we do and we would therefore turn down what has been upward curve in longevity over many decades.  A critical need there through research, research that involves nutrition, research that involves understanding exercise, then understand the built environment and how to motivate health behaviors to try to turn around this obesity epidemic.  

Certainly other areas of concern... Alzheimer’s Disease comes to mind as a condition which as our population is aging and as the Boomers are coming into this phase of potentially higher risk of Alzheimer’s, that we are gong to see very large numbers of people affected by this heartbreaking disease with terrible consequences for themselves and their families and for our medical economics because of the cost of caring for them.  So this has to be a very high priority for our high intensity efforts to come up with new solutions about prevention and treatment.

Question:
How much of research should be focused on prevention, as opposed to treatments and cures?


Francis Collins: NIH is intensely interested in prevention.  I think everybody would agree that we haven’t paid enough attention to this approach to maintaining health, that we’ve not had a health care system in terms of medical care—we’ve had a "sick care" system where if you get sick there might be some help for you, but there’s been relatively little invested in terms of helping people stay well.  And maybe as a part of that we’ve had modest efforts, really, to try to invest in research on prevention.  That’s all changing.  Some of that’s coming about because of a better understanding of the environment and things that people should be careful about as far as bad influences on their future health, whether it’s smoking or diet or exercise.  We’re learning a lot about that.  

And some of it is the ability through personalized medicine to begin to identify individual risks for a future illness to get us beyond the one-size fits all approach to prevention, which has been not that effective.  People haven’t necessarily warmed to these recommendations about what you should do about diet, exercise, colonoscopies, mammograms and so on because it all sounds very much generic.  

But if you could provide people with information about their personal risks and allow them therefore to come up with a personalized plan for maintaining health that seems to inspire a lot more interest.  Genomics is moving us in the direction of being able to do that and I think that’s one of the more exciting developments in the prevention arena even though it’s early days yet, to see how that’s going to play out.

Recorded September 13, 2010
Interviewed by David Hirschman

We must confront our national obesity crisis, warns NIH director Francis Collins, or face a decrease in life expectancy.

Deep learning nails correlation. Causation is another matter.

Why do people with bigger hands have a better vocabulary? That's one question deep learning can't answer.

Videos
  • Did you know that people with bigger hands have larger vocabularies?
  • While that's actually true, it's not a causal relationship. This pattern exists because adults tend know more words than kids. It's a correlation, explains NYU professor Gary Marcus.
  • Deep learning struggles with how to perceive causal relationships. If given the data on hand size and vocabulary size, a deep learning system might only be able to see the correlation, but wouldn't be able to answer the 'why?' of it.
Keep reading Show less

Is NASA ignoring proof of Martian life from the 1970s?

One of the scientists with the Viking missions says yes.

Image source: David Williams/NASA
Surprising Science
  • A former NASA consultant believe his experiments on the Viking 1 and 2 landers proved the existence of living microorganisms on Mars
  • Because of other conflicting data, his experiments' results have been largely discarded.
  • Though other subsequent evidence supports their findings, he says NASA has been frustratingly disinterested in following up.

Gilbert V. Levin is clearly aggravated with NASA, frustrated by the agency's apparent unwillingness to acknowledge what he considers a fact: That NASA has had dispositive proof of living microorganisms on Mars since 1976, and a great deal of additional evidence since then. Levin is no conspiracy theorist, either. He's an engineer, a respected inventor, founder of scientific-research company Spherix, and a participant in that 1976 NASA mission. He's written an opinion piece in Scientific American that asks why NASA won't follow up on what he believes they should already know.

In 1976

Image source: NASA/JPL

Sunset at the Viking 1 site

As the developer of methods for rapidly detecting and identifying microorganisms, Levin took part in the Labeled Release (LR) experiment landed on Mars by NASA's Viking 1 and 2.

At both landing sites, the Vikings picked up samples of Mars soil, treating each with a drop of a dilute nutrient solution. This solution was tagged with radioactive carbon-14, and so if there were any microorganisms in the samples, they would metabolize it. This would lead to the production of radioactive carbon or radioactive methane. Sensors were positioned above the soil samples to detect the presence of either as signifiers of life.

At both landing sites, four positive indications of life were recorded, backed up by five controls. As a guarantee, the samples were then heated to 160°, hot enough to kill any living organisms in the soil, and then tested again. No further indicators of life were detected.

According to many, including Levin, had this test been performed on Earth, there would have been no doubt that life had been found. In fact, parallel control tests were performed on Earth on two samples known to be lifeless, one from the Moon and one from Iceland's volcanic Surtsey island, and no life was indicated.

However, on Mars, another experiment, a search for organic molecules, had been performed prior to the LR test and found nothing, leaving NASA in doubt regarding the results of the LR experiment, and concluding, according to Levin, that they'd found something imitating life, but not life itself. From there, notes Levin, "Inexplicably, over the 43 years since Viking, none of NASA's subsequent Mars landers has carried a life detection instrument to follow up on these exciting results."

Subsequent evidence

Image source: NASA

A thin coating of water ice on the rocks and soil photographed by Viking 2

Levin presents in his opinion piece 17 discoveries by subsequent Mars landers that support the results of the LR experiment. Among these:

  • Surface water sufficient to sustain microorganisms has been found on the red planet by Viking, Pathfinder, Phoenix and Curiosity.
  • The excess of carbon-13 over carbon-12 in the Martian atmosphere indicates biological activity since organisms prefer ingesting carbon-12.
  • Mars' CO2should long ago have been converted to CO by the sun's UV light, but CO2 is being regenerated, possibly by microorganisms as happens on Earth.
  • Ghost-like moving lights, resembling Earth's will-O'-the-wisps produced by spontaneous ignition of methane, have been seen and recorded on the Martian surface.
  • "No factor inimical to life has been found on Mars." This is a direct rebuttal of NASA's claim cited above.

Frustration

Image source: NASA

A technician checks the soil sampler of a Viking lander.

By 1997, Levin was convinced that NASA was wrong and set out to publish followup research supporting his conclusion. It took nearly 20 years to find a venue, he believes due to his controversial certainty that the LR experiment did indeed find life on Mars.

Levin tells phys.org, "Since I first concluded that the LR had detected life (in 1997), major juried journals had refused our publications. I and my co-Experimenter, Dr. Patricia Ann Straat, then published mainly in the astrobiology section of the SPIE Proceedings, after presenting the papers at the annual SPIE conventions. Though these were invited papers, they were largely ignored by the bulk of astrobiologists in their publications." (Staat is the author of To Mars with Love, about her experience as co-experimenter with Levin for the LR experiments.)

Finally, he and Straat decided to craft a paper that answers every objection anyone ever had to their earlier versions, finally publishing it in Astrobiology's October 2016 issue. "You may not agree with the conclusion," he says, "but you cannot disparage the steps leading there. You can say only that the steps are insufficient. But, to us, that seems a tenuous defense, since no one would refute these results had they been obtained on Earth."

Nonetheless, NASA's seeming reluctance to address the LR experiment's finding remains an issue for Levin. He and Straat have petitioned NASA to send a new LR test to the red planets, but, alas, Levin reports that "NASA has already announced that its 2020 Mars lander will not contain a life-detection test."

Physicists solve a 140-year-old mystery

Scientists discover the inner workings of an effect that will lead to a new generation of devices.

Credit: IBM
Surprising Science
  • Researchers discover a method of extracting previously unavailable information from superconductors.
  • The study builds on a 19th-century discovery by physicist Edward Hall.
  • The research promises to lead to a new generation of semiconductor materials and devices.
Keep reading Show less