David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Chris Hadfield
Retired Canadian Astronaut & Author
from the world's big
Start Learning

If You Were a Different Species…

Question: As a non-scientist, were you honored to have a species named after you?


Carl Zimmer: About a year ago I got this really interesting message from someone, an email from a graduate student and she told me about reading a book of mine, Parasite Rex and my book is all about how fascinating parasites are, how important they are and just how intriguing they are and at the time she was trying to figure out what she was going to do and in a sense she said I had given her permission to be fascinated by parasites. She had always been intrigued by them, but now it seemed okay and so actually she is now a parasitologist and to express her gratitude she said she wanted to name a parasite after me, which I thought was fantastic. The parasite is called Canthorbian [ph] zimmeri. I’m sorry, Ancanthobothirum zimmeri. It’s a lot of Latin there. In any case it’s a tapeworm and it’s not just any tapeworm. It’s a tapeworm that only lives in one species of stingray that lives off the coast of Australia. It’s a tiny little thing, maybe about that big. You know some tapeworms like the ones that get inside of us they get to be forty feet long, horrendously long. These are very tiny ones, but to me it’s still special because it’s mine. What was funny though was that after I had sort of gotten over the initial rush of having a species named after me I started to think about it and I realized, well, maybe it’s not that special.


I was at this meeting of parasitologists including Carrie Fyler, who named the species after me, and I was talking to her and another parasitologist who studies tapeworms, and she was talking about how she was going to name this species after me, and the parasitologist looked at me and said, “Yeah, I could see how you’d name an Ancanthobothirum species after him.” “He is kind of tall and pretty slim.” And I said, “What do you mean?” Well he said, “There is another genus that is very round and kind of fat and, you know, so I named…” I think he said that he named it after her aunt or something like that because it’s just matched her body shape, and I thought huh, that’s interesting. And then they started like talking about all the different people that they’ve named a species after and you realize they’re naming them after relatives and friends, people who live down the block. The problem is that there are just so many species, so these scientists who study these tapeworms have thousands and thousands of species left to name. They need thousands of names. Obviously this is just a microcosm of the whole problem that scientists have in naming species. We actually only really know a tiny fraction of all the species on earth. We probably know just about all the mammal species, but beyond that we’re still pretty sketchy and actually some scientists have estimated that maybe we only know perhaps between ten and twenty percent of all the species on earth. Actually that estimate is a really ridiculous lowball I think because they’re not taking into account bacteria and other microbes. It’s becoming very clear that there is a colossal diversity of microbes out there that we haven’t even started to catalog. I saw one estimate, one microbiologist told me that he thinks that there are a 150 million species of bacteria and there have just been a few thousand of those species named. So you know it’s still great to have a species named after me, but you know I think that … I think a lot of people on earth could have species named after them once… when scientists are done with the full catalog if they ever get there.

Recorded on January 6, 2010
Interviewed\r\n by Austin Allen

Science writer Carl Zimmer has had a species of tapeworm named after him. It’s an honor, he says, that almost everyone on earth could conceivably share.

Does conscious AI deserve rights?

If machines develop consciousness, or if we manage to give it to them, the human-robot dynamic will forever be different.

  • Does AI—and, more specifically, conscious AI—deserve moral rights? In this thought exploration, evolutionary biologist Richard Dawkins, ethics and tech professor Joanna Bryson, philosopher and cognitive scientist Susan Schneider, physicist Max Tegmark, philosopher Peter Singer, and bioethicist Glenn Cohen all weigh in on the question of AI rights.
  • Given the grave tragedy of slavery throughout human history, philosophers and technologists must answer this question ahead of technological development to avoid humanity creating a slave class of conscious beings.
  • One potential safeguard against that? Regulation. Once we define the context in which AI requires rights, the simplest solution may be to not build that thing.

A new hydrogel might be strong enough for knee replacements

Duke University researchers might have solved a half-century old problem.

Photo by Alexander Hassenstein/Getty Images
Technology & Innovation
  • Duke University researchers created a hydrogel that appears to be as strong and flexible as human cartilage.
  • The blend of three polymers provides enough flexibility and durability to mimic the knee.
  • The next step is to test this hydrogel in sheep; human use can take at least three years.
Keep reading Show less

Hints of the 4th dimension have been detected by physicists

What would it be like to experience the 4th dimension?

Two different experiments show hints of a 4th spatial dimension. Credit: Zilberberg Group / ETH Zürich
Technology & Innovation

Physicists have understood at least theoretically, that there may be higher dimensions, besides our normal three. The first clue came in 1905 when Einstein developed his theory of special relativity. Of course, by dimensions we’re talking about length, width, and height. Generally speaking, when we talk about a fourth dimension, it’s considered space-time. But here, physicists mean a spatial dimension beyond the normal three, not a parallel universe, as such dimensions are mistaken for in popular sci-fi shows.

Keep reading Show less

Predicting PTSD symptoms becomes possible with a new test

An algorithm may allow doctors to assess PTSD candidates for early intervention after traumatic ER visits.

Image source: camillo jimenez/Unsplash
Technology & Innovation
  • 10-15% of people visiting emergency rooms eventually develop symptoms of long-lasting PTSD.
  • Early treatment is available but there's been no way to tell who needs it.
  • Using clinical data already being collected, machine learning can identify who's at risk.

The psychological scars a traumatic experience can leave behind may have a more profound effect on a person than the original traumatic experience. Long after an acute emergency is resolved, victims of post-traumatic stress disorder (PTSD) continue to suffer its consequences.

In the U.S. some 30 million patients are annually treated in emergency departments (EDs) for a range of traumatic injuries. Add to that urgent admissions to the ED with the onset of COVID-19 symptoms. Health experts predict that some 10 percent to 15 percent of these people will develop long-lasting PTSD within a year of the initial incident. While there are interventions that can help individuals avoid PTSD, there's been no reliable way to identify those most likely to need it.

That may now have changed. A multi-disciplinary team of researchers has developed a method for predicting who is most likely to develop PTSD after a traumatic emergency-room experience. Their study is published in the journal Nature Medicine.

70 data points and machine learning

nurse wrapping patient's arm

Image source: Creators Collective/Unsplash

Study lead author Katharina Schultebraucks of Columbia University's Department Vagelos College of Physicians and Surgeons says:

"For many trauma patients, the ED visit is often their sole contact with the health care system. The time immediately after a traumatic injury is a critical window for identifying people at risk for PTSD and arranging appropriate follow-up treatment. The earlier we can treat those at risk, the better the likely outcomes."

The new PTSD test uses machine learning and 70 clinical data points plus a clinical stress-level assessment to develop a PTSD score for an individual that identifies their risk of acquiring the condition.

Among the 70 data points are stress hormone levels, inflammatory signals, high blood pressure, and an anxiety-level assessment. Says Schultebraucks, "We selected measures that are routinely collected in the ED and logged in the electronic medical record, plus answers to a few short questions about the psychological stress response. The idea was to create a tool that would be universally available and would add little burden to ED personnel."

Researchers used data from adult trauma survivors in Atlanta, Georgia (377 individuals) and New York City (221 individuals) to test their system.

Of this cohort, 90 percent of those predicted to be at high risk developed long-lasting PTSD symptoms within a year of the initial traumatic event — just 5 percent of people who never developed PTSD symptoms had been erroneously identified as being at risk.

On the other side of the coin, 29 percent of individuals were 'false negatives," tagged by the algorithm as not being at risk of PTSD, but then developing symptoms.

Going forward

person leaning their head on another's shoulder

Image source: Külli Kittus/Unsplash

Schultebraucks looks forward to more testing as the researchers continue to refine their algorithm and to instill confidence in the approach among ED clinicians: "Because previous models for predicting PTSD risk have not been validated in independent samples like our model, they haven't been adopted in clinical practice." She expects that, "Testing and validation of our model in larger samples will be necessary for the algorithm to be ready-to-use in the general population."

"Currently only 7% of level-1 trauma centers routinely screen for PTSD," notes Schultebraucks. "We hope that the algorithm will provide ED clinicians with a rapid, automatic readout that they could use for discharge planning and the prevention of PTSD." She envisions the algorithm being implemented in the future as a feature of electronic medical records.

The researchers also plan to test their algorithm at predicting PTSD in people whose traumatic experiences come in the form of health events such as heart attacks and strokes, as opposed to visits to the emergency department.