Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Spooky Action 101: Is Space as We Know It a Kind of Illusion?

The physics of "nonlocality" made easy.

George Musser: So spooky action at a distance was [Albert] Einstein’s kind of appellation for the idea of nonlocality. Non-locality is the technical term for it. And what it means is that there’s a connection between different objects or places in the universe. There’s some kind of link or bond between particles or places or just objects in general that can be quite far apart from one another. In principle, they can be on the other side of the universe even. And the natural world is filled with connections of different sorts. That’s really what science is all about — making sense of those connections. But what’s unusual about these connections is there doesn’t seem to be a connector. There’s no mechanism that actually relates the object in one place to the object in the other. And yet those objects still act in unison. They’re able to coordinate what they do. So that’s kind of the mystery of this whole subject why Einstein thought it was spooky that there was this connection and yet no seeming mechanism to explain it.

This phenomenon of nonlocality that worried Einstein actually comes out in many different ways. So the original way that Einstein was worried about concerned subatomic particles. So electrons, photons, neutrons, ions, you know, small things because they’re just easy to manipulate. And what you would do is you would create them together or you might bring them together and it has some kind of interaction and you develop a connection between them. They develop some kind of bond. And then they separate and in the original experiments they would go to the other side of the laboratory or the laboratory bench. And then they got more sophisticated and went to the other side of the city or the island chain. And in principle, you could take it, as I've said, to the other side of the known universe or even the unknown universe. And then once they have it in those — the two particles, in this case, in those remote locations they manipulate them. They perform some kind of action on them. They might measure them just to see what their properties are. And they can do that in several different ways. And what turns out to happen is that the particles are able to coordinate. They come up with the same measurement values.

So the example I often give is two coins. So you can treat some of these particles as having two possible outcomes of a measurement. And you can think about it as heads or tails of a coin. So you create two of them. You give one to your friend. Your friend goes off somewhere and you keep the other. And you both flip the coin and you come up with heads, they come up with heads. You come up with tails, they come up with tails. Heads, tails. It just goes back and forth. And yet they’re the same answer on both sides. And again there’s no mechanism. There’s no reason they would be. The scientists have gone through the different possible tricks like, for instance, are they double-sided coins? Are they trick coins? And they’ve kind of done experiments to rule that out. Is there some kind of surreptitious radio signal passing between them? They’ve ruled that out. Is there some kind of predetermination? I mean they would have gone through all the options and yet they can’t explain why these coins land on the same side. But now I think the progress of science and understanding the nature of space and time have taken us to a possible explanation.

So if you think of those two coins — they’re on opposite sides of the universe or the continent or wherever they may be. But they act as though they’re right next to one another. They act as though they’re kind of nuzzled up together. So they don’t seem to have any distance between them. They’re acting as though there’s no distance between them although if you go and measure the distance, it’s enormous. So the proposition is that the distance between them is somehow an illusion; it’s somehow kind of a mirage. Or maybe a better way of putting it, it’s a construction that those particles or those coins, the metaphor, are rooted in a layer of reality where the distance doesn’t seem to exist. They’re juxtaposed even though they look like they’re far apart. And the distance is real to us. So it’s real at our level of reality, but it’s not real to the particles. So the idea is that the concept of space, of distance, all the spatial concepts we deal with in science are emerging from that deeper level. They’re not fundamental in the world. They’re derivative.

Among Albert Einstein's most compelling theories is the idea of "spukhafte Fernwirkung," also known as spooky action at a distance. In this video, science writer George Musser gives a crash course in Einstein's fascinating model, which seeks to explain how objects separated by great distance can still seem to be in sync.


Musser is the author of Spooky Action at a Distance: The Phenomenon That Reimagines Space and Time--and What It Means for Black Holes, the Big Bang, and Theories of Everything.

The “new normal” paradox: What COVID-19 has revealed about higher education

Higher education faces challenges that are unlike any other industry. What path will ASU, and universities like ASU, take in a post-COVID world?

Photo: Luis Robayo/AFP via Getty Images
Sponsored by Charles Koch Foundation
  • Everywhere you turn, the idea that coronavirus has brought on a "new normal" is present and true. But for higher education, COVID-19 exposes a long list of pernicious old problems more than it presents new problems.
  • It was widely known, yet ignored, that digital instruction must be embraced. When combined with traditional, in-person teaching, it can enhance student learning outcomes at scale.
  • COVID-19 has forced institutions to understand that far too many higher education outcomes are determined by a student's family income, and in the context of COVID-19 this means that lower-income students, first-generation students and students of color will be disproportionately afflicted.
Keep reading Show less

The biology of aliens: How much do we know?

Hollywood has created an idea of aliens that doesn't match the science.

Videos
  • Ask someone what they think aliens look like and you'll probably get a description heavily informed by films and pop culture. The existence of life beyond our planet has yet to be confirmed, but there are clues as to the biology of extraterrestrials in science.
  • "Don't give them claws," says biologist E.O. Wilson. "Claws are for carnivores and you've got to be an omnivore to be an E.T. There just isn't enough energy available in the next trophic level down to maintain big populations and stable populations that can evolve civilization."
  • In this compilation, Wilson, theoretical physicist Michio Kaku, Bill Nye, and evolutionary biologist Jonathan B. Losos explain why aliens don't look like us and why Hollywood depictions are mostly inaccurate.
Keep reading Show less

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

Masturbation boosts your immune system, helping you fight off infection and illness

Can an orgasm a day really keep the doctor away?

Image by Yurchanka Siarhei on Shutterstock
Sex & Relationships
  • Achieving orgasm through masturbation provides a rush of feel-good hormones (such as dopamine, serotonin and oxytocin) and can re-balance our levels of cortisol (a stress-inducing hormone). This helps our immune system function at a higher level.
  • The surge in "feel-good" hormones also promotes a more relaxed and calm state of being, making it easier to achieve restful sleep, which is a critical part in maintaining a high-functioning immune system.
  • Just as bad habits can slow your immune system, positive habits (such as a healthy sleep schedule and active sex life) can help boost your immune system which can prevent you from becoming sick.
Keep reading Show less

How DNA revealed the woolly mammoth's fate – and what it teaches us today

Scientists uncovered the secrets of what drove some of the world's last remaining woolly mammoths to extinction.

Ethan Miller/Getty Images
Surprising Science

Every summer, children on the Alaskan island of St Paul cool down in Lake Hill, a crater lake in an extinct volcano – unaware of the mysteries that lie beneath.

Keep reading Show less
Quantcast