The true value of coding: It teaches you to think differently

Interest in learning certain skills, like computer science, can wax and wane with economic opportunity and job availability. But Gene Luen-Yang explains why it's a valuable skill in any season.

GENE LUEN YANG: I was a high school computer science teacher for 17 years. I taught at Bishop O’Dowd High School in Oakland, California. 

I taught during the dotcom boom, I taught during the dotcom bust, and I taught during sort of the recovery of the tech industry afterwards, and I did see the interest in what I was teaching fluctuate. 

It would go up and down every year largely tied to the economy, which was a little bit weird to me. And even as a school, you know, when I began to teach in the late 90s the school itself actually had a computer requirement. You were required to take a certain number of computer classes before you were allowed to graduate. They got rid of that requirement. They got rid of that requirement because at some point they felt like computer literacy was so important that it ought to be integrated in all the other subjects. So it shouldn’t be a thing in and of itself. 

So in the beginning I agreed with that. But after seeing how it played out I don’t think it was as effective as we wanted it to be, you know. I think that computers are still a fairly specialized type of knowledge, computer science. And teachers today still—I don’t think we’ve been trained on how to integrate computer science well into the other subjects. 

So ultimately what ended up happening at that school site was we would graduate students who would know how to use computers but would not necessarily understand how they worked or even understand how to maximize what they could get out of the computer. 

As a computer science teacher, something I used to talk to parents about—especially during the dotcom bust when interest in my class started to evaporate—is coding is not about training students how to type into a computer. That’s the least of it. Coding is actually really about training students to think in a certain way. It’s about training students to take large and complex problems and break them up into small pieces. It’s about training students to take things that are vague, that are difficult to wrap your mind around, and putting them into concrete sequential steps. 

And that sort of thinking, that sort of skill, that sort of mental skill is applicable no matter what you do in life, you know. What you’re talking about right now, about how the future economy is going to require more knowledge work—we don’t know what computers are going to look like, right? 

We don’t know, we don’t even know what coding is going to look like. But I can guarantee you that the coding mentality, the type of thinking that’s required in order to code well, that will become increasingly valuable as we go on. 

I think when you teach kids computer science you are touching on a lot of principles of logic. And in terms of students knowing how to use computers but not necessarily understanding why they work, I think that’s largely a product of the success of the computer field, you know. 

Within computer science there’s this idea of abstraction, where you separate the interface of something from the internals of it. And that’s something that I talked about in my computer science classes when I was teaching. You do that because it makes the computer itself, it makes whatever you’re making easier to use, right? 

The user just has to have like a working mental model of what the interface looks like. They don’t have to know anything about the guts underneath. But unfortunately what you miss out on in that is the mental development in your thinking that comes with understanding the guts, right? 

When you understand the guts it’s not just for using that tool, it’s actually to change what’s inside of your skull. It’s actually to change your brain. It makes you a better thinker. It makes you a better problem solver to understand those things. 

So I think there’s a place—I think there’s a place for abstraction, but my hope is that every student, before they graduate from high school they’ll have a chance to wrestle with those guts, to be able to really understand how a computer works from the inside. How both software and hardware work from the inside.

As a high school teacher for 17 years, Gene Luen-Yang experienced the highs and lows of teaching computer science. Initially offered as a standalone course at Bishop O’Dowd High School, where Luen-Yang taught, faculty came to believe that computer science was so essential that it be integrated into every subject. Still, interest in learning coding among students varied with market fortunes. When the dotcom bubble burst in the late 1990s, fewer students wanted to learn the zen of programming languages. That's a shame, says Luen-Yang, because more than an employable skill, coding is a gateway to using logic to solve large problems creatively. Gene Luen Yang's most recent book is Paths & Portals.


Photos: Courtesy of Let Grow
Sponsored by Charles Koch Foundation
  • The coronavirus pandemic may have a silver lining: It shows how insanely resourceful kids really are.
  • Let Grow, a non-profit promoting independence as a critical part of childhood, ran an "Independence Challenge" essay contest for kids. Here are a few of the amazing essays that came in.
  • Download Let Grow's free Independence Kit with ideas for kids.
Keep reading Show less

The surprise reason sleep-deprivation kills lies in the gut

New research establishes an unexpected connection.

Image source: Vaccaro et al, 2020/Harvard Medical School
Surprising Science
  • A study provides further confirmation that a prolonged lack of sleep can result in early mortality.
  • Surprisingly, the direct cause seems to be a buildup of Reactive Oxygen Species in the gut produced by sleeplessness.
  • When the buildup is neutralized, a normal lifespan is restored.

We don't have to tell you what it feels like when you don't get enough sleep. A night or two of that can be miserable; long-term sleeplessness is out-and-out debilitating. Though we know from personal experience that we need sleep — our cognitive, metabolic, cardiovascular, and immune functioning depend on it — a lack of it does more than just make you feel like you want to die. It can actually kill you, according to study of rats published in 1989. But why?

A new study answers that question, and in an unexpected way. It appears that the sleeplessness/death connection has nothing to do with the brain or nervous system as many have assumed — it happens in your gut. Equally amazing, the study's authors were able to reverse the ill effects with antioxidants.

The study, from researchers at Harvard Medical School (HMS), is published in the journal Cell.

An unexpected culprit

The new research examines the mechanisms at play in sleep-deprived fruit flies and in mice — long-term sleep-deprivation experiments with humans are considered ethically iffy.

What the scientists found is that death from sleep deprivation is always preceded by a buildup of Reactive Oxygen Species (ROS) in the gut. These are not, as their name implies, living organisms. ROS are reactive molecules that are part of the immune system's response to invading microbes, and recent research suggests they're paradoxically key players in normal cell signal transduction and cell cycling as well. However, having an excess of ROS leads to oxidative stress, which is linked to "macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging." To prevent this, cellular defenses typically maintain a balance between ROS production and removal.

"We took an unbiased approach and searched throughout the body for indicators of damage from sleep deprivation," says senior study author Dragana Rogulja, admitting, "We were surprised to find it was the gut that plays a key role in causing death." The accumulation occurred in both sleep-deprived fruit flies and mice.

"Even more surprising," Rogulja recalls, "we found that premature death could be prevented. Each morning, we would all gather around to look at the flies, with disbelief to be honest. What we saw is that every time we could neutralize ROS in the gut, we could rescue the flies." Fruit flies given any of 11 antioxidant compounds — including melatonin, lipoic acid and NAD — that neutralize ROS buildups remained active and lived a normal length of time in spite of sleep deprivation. (The researchers note that these antioxidants did not extend the lifespans of non-sleep deprived control subjects.)

fly with thought bubble that says "What? I'm awake!"

Image source: Tomasz Klejdysz/Shutterstock/Big Think

The experiments

The study's tests were managed by co-first authors Alexandra Vaccaro and Yosef Kaplan Dor, both research fellows at HMS.

You may wonder how you compel a fruit fly to sleep, or for that matter, how you keep one awake. The researchers ascertained that fruit flies doze off in response to being shaken, and thus were the control subjects induced to snooze in their individual, warmed tubes. Each subject occupied its own 29 °C (84F) tube.

For their sleepless cohort, fruit flies were genetically manipulated to express a heat-sensitive protein in specific neurons. These neurons are known to suppress sleep, and did so — the fruit flies' activity levels, or lack thereof, were tracked using infrared beams.

Starting at Day 10 of sleep deprivation, fruit flies began dying, with all of them dead by Day 20. Control flies lived up to 40 days.

The scientists sought out markers that would indicate cell damage in their sleepless subjects. They saw no difference in brain tissue and elsewhere between the well-rested and sleep-deprived fruit flies, with the exception of one fruit fly.

However, in the guts of sleep-deprived fruit flies was a massive accumulation of ROS, which peaked around Day 10. Says Vaccaro, "We found that sleep-deprived flies were dying at the same pace, every time, and when we looked at markers of cell damage and death, the one tissue that really stood out was the gut." She adds, "I remember when we did the first experiment, you could immediately tell under the microscope that there was a striking difference. That almost never happens in lab research."

The experiments were repeated with mice who were gently kept awake for five days. Again, ROS built up over time in their small and large intestines but nowhere else.

As noted above, the administering of antioxidants alleviated the effect of the ROS buildup. In addition, flies that were modified to overproduce gut antioxidant enzymes were found to be immune to the damaging effects of sleep deprivation.

The research leaves some important questions unanswered. Says Kaplan Dor, "We still don't know why sleep loss causes ROS accumulation in the gut, and why this is lethal." He hypothesizes, "Sleep deprivation could directly affect the gut, but the trigger may also originate in the brain. Similarly, death could be due to damage in the gut or because high levels of ROS have systemic effects, or some combination of these."

The HMS researchers are now investigating the chemical pathways by which sleep-deprivation triggers the ROS buildup, and the means by which the ROS wreak cell havoc.

"We need to understand the biology of how sleep deprivation damages the body so that we can find ways to prevent this harm," says Rogulja.

Referring to the value of this study to humans, she notes,"So many of us are chronically sleep deprived. Even if we know staying up late every night is bad, we still do it. We believe we've identified a central issue that, when eliminated, allows for survival without sleep, at least in fruit flies."

Withdrawal symptoms from antidepressants can last over a year, new study finds

We must rethink the "chemical imbalance" theory of mental health.

Photo Illustration by Joe Raedle/Getty Images
Surprising Science
  • A new review found that withdrawal symptoms from antidepressants and antipsychotics can last for over a year.
  • Side effects from SSRIs, SNRIs, and antipsychotics last longer than benzodiazepines like Valium or Prozac.
  • The global antidepressant market is expected to reach $28.6 billion this year.
Keep reading Show less

Four philosophers who realized they were completely wrong about things

Philosophers like to present their works as if everything before it was wrong. Sometimes, they even say they have ended the need for more philosophy. So, what happens when somebody realizes they were mistaken?

Sartre and Wittgenstein realize they were mistaken. (Getty Images)
Culture & Religion

Sometimes philosophers are wrong and admitting that you could be wrong is a big part of being a real philosopher. While most philosophers make minor adjustments to their arguments to correct for mistakes, others make large shifts in their thinking. Here, we have four philosophers who went back on what they said earlier in often radical ways. 

Keep reading Show less

Is there a limit to optimism when it comes to climate change?

Or is doubt a self-fulfilling prophecy?

David McNew/Getty Images
Politics & Current Affairs

'We're doomed': a common refrain in casual conversation about climate change.

Keep reading Show less