Time Is a Puzzle to Scientists, but Your Brain Has It All Figured Out

Your brain doesn't have a watch. It doesn't know hours or minutes—but it does understand cause and effect. And it uses this in a way to figure out time.

Dean Buonomano: So human beings have been building clocks for millennium and it’s been a long endeavor of our species from sundials to hour glasses to pendulum clocks to quartz watches to car and atomic clocks.

Yet the brain has been telling time since the dawn of animal species, right? So even plants have the ability to tell time in terms of circadian clock.

So one of the mysteries in neuroscience that many people are studying is how the brain tells time. So in order to understand how the brain tells time it’s useful to quickly remember how manmade clocks work. And there’s a vast diversity of manmade clocks from pendulums to quartz watches to atomic clocks. And as diverse as these things are they share a common principle, an almost embarrassingly simple principle, which is just counting the ticks of an oscillator. So with the pendulum you just count the ticks of the pendulum going back and forth. In the quartz watch you’re just counting the mechanical vibrations of a quartz crystal. And in the case of an atomic clock it’s a bit more complicated, but they’re related to vacillatory cycle of an electromagnetic waves. So it’s reasonable to ask, “Well is that how the brain tells time? Does the brain have some oscillator that’s ticking away and some circuit that’s counting those ticks and tocks?”

The answer is no. The brain seems to have fundamentally different ways of telling time. So the first thing to notice is that while the mechanical clocks that we make, even your quartz watch can tell time across a vast range of scales from tens of milliseconds to hours, minutes and days and months and years.

So the brain has many different clocks in order to tell the milliseconds and seconds and to tell the time of day. So one way to think about it is the circadian clock, the clock that tells you what time of day it is and when to arise and when to go to sleep. That doesn’t have a minute hand, much less a second hand. In contrast the clock that tells you—the timing device in your brain that tells you, “Hmm, this red light is taking a bit too long to turn.”

“This traffic light is taking a bit long to turn” or “I think the waiter forgot my coffee.” That clock doesn’t have an hour hand much less number of days that have gone by.

So the brain has different areas, different mechanisms in order to tell time. We don’t understand, fully understand, how the brain tells you what the tempo of a song is or when the red light is going to change. But it doesn’t seem to have to do with any oscillator-counter mechanisms. It seems to do with neural dynamics which is the fact that patterns of neurons—neurons are coupled to each other, neurons are connected to each other—And when you activate some neurons that group of neurons can activate another group of neurons which can active another group of neurons. So you can have these evolving patterns of neural activity.

And in the same way that if you throw a pebble into a pond it can create this dynamical pattern. And in a way that pattern tells you how much time has elapsed, right. You know that looking at the pond if the diameter of those ripples is large, more time has elapsed then if it’s a little ripple. So any dynamical system in principle has the ability to convey information about elapsed time. It can be a timer.

So as far as we know it seems that one of the mechanisms that the brain uses to tell time on the scale of hundreds of milliseconds to seconds is through neural dynamics and changing patterns of neural activity, neuron A activates neuron B which activates neuron C and you have these complex evolving patterns. So this is consistent with what we all the multiple clock principle which is the brain doesn’t have any master clock. It has many different circuits, each specialized or that focuses on processing time on one scale or another.

Need to know the time? Just look at a clock. But if your brain needs to tell the time, it's a whole other different theory. Neuroscientist Dean Buonomano is an expert on brains (obviously) but posits that your brain tells time much more by a domino effect than by any sort of mechanism. He uses an interesting pebble-pond-ripple scenario to walk us through it, saying that "if you throw a pebble into a pond it can create this dynamical pattern. And in a way that pattern tells you how much time has elapsed." Much in the same way, our brain simply looks for patterns. Buonomano goes into it in more detail than we do here in this paragraph, but the science is largely that simple: our brains tell time by looking for disruptions in the moments of zen.


Dean's new book is appropriately called Your Brain Is A Time Machine.

Do you worry too much? Stoicism can help

How imagining the worst case scenario can help calm anxiety.

Credit: OLIVIER DOULIERY via Getty Images
Personal Growth
  • Stoicism is the philosophy that nothing about the world is good or bad in itself, and that we have control over both our judgments and our reactions to things.
  • It is hardest to control our reactions to the things that come unexpectedly.
  • By meditating every day on the "worst case scenario," we can take the sting out of the worst that life can throw our way.
Keep reading Show less

Study: People will donate more to charity if they think something’s in it for them

A study on charity finds that reminding people how nice it feels to give yields better results than appealing to altruism.

Photo by Pixabay from Pexels
Personal Growth
  • A study finds asking for donations by appealing to the donor's self-interest may result in more money than appealing to their better nature.
  • Those who received an appeal to self-interest were both more likely to give and gave more than those in the control group.
  • The effect was most pronounced for those who hadn't given before.
Keep reading Show less

U.S. Navy controls inventions that claim to change "fabric of reality"

Inventions with revolutionary potential made by a mysterious aerospace engineer for the U.S. Navy come to light.

Credit: Getty Images
Surprising Science
  • U.S. Navy holds patents for enigmatic inventions by aerospace engineer Dr. Salvatore Pais.
  • Pais came up with technology that can "engineer" reality, devising an ultrafast craft, a fusion reactor, and more.
  • While mostly theoretical at this point, the inventions could transform energy, space, and military sectors.
Keep reading Show less

160-million-year-old ‘Monkeydactyl’ was the first animal to develop opposable thumbs

The 'Monkeydactyl' was a flying reptile that evolved highly specialized adaptations in the Mesozoic Era.

Credit: Zhou et al.
Surprising Science
  • The 'Monkeydactly', or Kunpengopterus antipollicatus, was a species of pterosaur, a group of flying reptiles that were the first vertebrates to evolve the ability of powered flight.
  • In a recent study, a team of researchers used microcomputed tomography scanning to analyze the anatomy of the newly discovered species, finding that it was the first known species to develop opposable thumbs.
  • As highly specialized dinosaurs, pterosaurs boasted unusual anatomy that gave them special advantages as aerial predators in the Mesozoic Era.
Keep reading Show less
Quantcast