Self-Motivation
David Goggins
Former Navy Seal
Career Development
Bryan Cranston
Actor
Critical Thinking
Liv Boeree
International Poker Champion
Emotional Intelligence
Amaryllis Fox
Former CIA Clandestine Operative
Management
Chris Hadfield
Retired Canadian Astronaut & Author
Learn
from the world's big
thinkers
Start Learning

Time Is a Puzzle to Scientists, but Your Brain Has It All Figured Out

Your brain doesn't have a watch. It doesn't know hours or minutes—but it does understand cause and effect. And it uses this in a way to figure out time.

Dean Buonomano: So human beings have been building clocks for millennium and it’s been a long endeavor of our species from sundials to hour glasses to pendulum clocks to quartz watches to car and atomic clocks.

Yet the brain has been telling time since the dawn of animal species, right? So even plants have the ability to tell time in terms of circadian clock.

So one of the mysteries in neuroscience that many people are studying is how the brain tells time. So in order to understand how the brain tells time it’s useful to quickly remember how manmade clocks work. And there’s a vast diversity of manmade clocks from pendulums to quartz watches to atomic clocks. And as diverse as these things are they share a common principle, an almost embarrassingly simple principle, which is just counting the ticks of an oscillator. So with the pendulum you just count the ticks of the pendulum going back and forth. In the quartz watch you’re just counting the mechanical vibrations of a quartz crystal. And in the case of an atomic clock it’s a bit more complicated, but they’re related to vacillatory cycle of an electromagnetic waves. So it’s reasonable to ask, “Well is that how the brain tells time? Does the brain have some oscillator that’s ticking away and some circuit that’s counting those ticks and tocks?”

The answer is no. The brain seems to have fundamentally different ways of telling time. So the first thing to notice is that while the mechanical clocks that we make, even your quartz watch can tell time across a vast range of scales from tens of milliseconds to hours, minutes and days and months and years.

So the brain has many different clocks in order to tell the milliseconds and seconds and to tell the time of day. So one way to think about it is the circadian clock, the clock that tells you what time of day it is and when to arise and when to go to sleep. That doesn’t have a minute hand, much less a second hand. In contrast the clock that tells you—the timing device in your brain that tells you, “Hmm, this red light is taking a bit too long to turn.”

“This traffic light is taking a bit long to turn” or “I think the waiter forgot my coffee.” That clock doesn’t have an hour hand much less number of days that have gone by.

So the brain has different areas, different mechanisms in order to tell time. We don’t understand, fully understand, how the brain tells you what the tempo of a song is or when the red light is going to change. But it doesn’t seem to have to do with any oscillator-counter mechanisms. It seems to do with neural dynamics which is the fact that patterns of neurons—neurons are coupled to each other, neurons are connected to each other—And when you activate some neurons that group of neurons can activate another group of neurons which can active another group of neurons. So you can have these evolving patterns of neural activity.

And in the same way that if you throw a pebble into a pond it can create this dynamical pattern. And in a way that pattern tells you how much time has elapsed, right. You know that looking at the pond if the diameter of those ripples is large, more time has elapsed then if it’s a little ripple. So any dynamical system in principle has the ability to convey information about elapsed time. It can be a timer.

So as far as we know it seems that one of the mechanisms that the brain uses to tell time on the scale of hundreds of milliseconds to seconds is through neural dynamics and changing patterns of neural activity, neuron A activates neuron B which activates neuron C and you have these complex evolving patterns. So this is consistent with what we all the multiple clock principle which is the brain doesn’t have any master clock. It has many different circuits, each specialized or that focuses on processing time on one scale or another.

Need to know the time? Just look at a clock. But if your brain needs to tell the time, it's a whole other different theory. Neuroscientist Dean Buonomano is an expert on brains (obviously) but posits that your brain tells time much more by a domino effect than by any sort of mechanism. He uses an interesting pebble-pond-ripple scenario to walk us through it, saying that "if you throw a pebble into a pond it can create this dynamical pattern. And in a way that pattern tells you how much time has elapsed." Much in the same way, our brain simply looks for patterns. Buonomano goes into it in more detail than we do here in this paragraph, but the science is largely that simple: our brains tell time by looking for disruptions in the moments of zen.


Dean's new book is appropriately called Your Brain Is A Time Machine.

Live on Tuesday | Personal finance in the COVID-19 era

Sallie Krawcheck and Bob Kulhan will be talking money, jobs, and how the pandemic will disproportionally affect women's finances.

Women who go to church have more kids—and more help

Want help raising your kids? Spend more time at church, says new study.

Pixabay
Culture & Religion
  • Religious people tend to have more children than secular people, but why remains unknown.
  • A new study suggests that the social circles provided by regular church going make raising kids easier.
  • Conversely, having a large secular social group made women less likely to have children.
Keep reading Show less

Bubonic plague case reported in China

Health officials in China reported that a man was infected with bubonic plague, the infectious disease that caused the Black Death.

(Photo by Centers for Disease Control and Prevention/Getty Images)
Coronavirus
  • The case was reported in the city of Bayannur, which has issued a level-three plague prevention warning.
  • Modern antibiotics can effectively treat bubonic plague, which spreads mainly by fleas.
  • Chinese health officials are also monitoring a newly discovered type of swine flu that has the potential to develop into a pandemic virus.
Keep reading Show less

Masturbation boosts your immune system, helping you fight off infection and illness

Can an orgasm a day really keep the doctor away?

Image by Yurchanka Siarhei on Shutterstock
Sex & Relationships
  • Achieving orgasm through masturbation provides a rush of feel-good hormones (such as dopamine, serotonin and oxytocin) and can re-balance our levels of cortisol (a stress-inducing hormone). This helps our immune system function at a higher level.
  • The surge in "feel-good" hormones also promotes a more relaxed and calm state of being, making it easier to achieve restful sleep, which is a critical part in maintaining a high-functioning immune system.
  • Just as bad habits can slow your immune system, positive habits (such as a healthy sleep schedule and active sex life) can help boost your immune system which can prevent you from becoming sick.
Keep reading Show less

Education vs. learning: How semantics can trigger a mind shift

The word "learning" opens up space for more people, places, and ideas.

Future of Learning
  • The terms 'education' and 'learning' are often used interchangeably, but there is a cultural connotation to the former that can be limiting. Education naturally links to schooling, which is only one form of learning.
  • Gregg Behr, founder and co-chair of Remake Learning, believes that this small word shift opens up the possibilities in terms of how and where learning can happen. It also becomes a more inclusive practice, welcoming in a larger, more diverse group of thinkers.
  • Post-COVID, the way we think about what learning looks like will inevitably change, so it's crucial to adjust and begin building the necessary support systems today.
Keep reading Show less
Quantcast