The Exact Number of Computers Needed to Simulate the Human Brain is Almost Inconceivable
Yes, conceivably. And if/when we achieve the levels of technology necessary for simulation, the universe will become our playground.
David Eagleman is a neuroscientist and a New York Times bestselling author. He directs the Laboratory for Perception and Action at the Baylor College of Medicine, where he also directs the Initiative on Neuroscience and Law. He is best known for his work on time perception, brain plasticity, synesthesia, and neurolaw.
He is the writer and presenter of the PBS epic series, The Brain with David Eagleman, and the author of the companion book, The Brain: The Story of You.
Beyond his 100+ academic publications, he has published many popular books. His bestselling book Incognito: The Secret Lives of the Brain, explores the neuroscience "under the hood" of the conscious mind: all the aspects of neural function to which we have no awareness or access. His work of fiction, SUM, is an international bestseller published in 28 languages and turned into two operas. Why the Net Matters examines what the advent of the internet means on the timescale of civilizations. The award-winning Wednesday is Indigo Blue explores the neurological condition of synesthesia, in which the senses are blended.
Eagleman is a TED speaker, a Guggenheim Fellow, a winner of the McGovern Award for Excellence in Biomedical Communication, a Next Generation Texas Fellow, Vice-Chair on the World Economic Forum's Global Agenda Council on Neuroscience & Behaviour, a research fellow in the Institute for Ethics and Emerging Technologies, Chief Scientific Advisor for the Mind Science Foundation, and a board member of The Long Now Foundation. He has served as an academic editor for several scientific journals. He was named Science Educator of the Year by the Society for Neuroscience, and was featured as one of the Brightest Idea Guys by Italy's Style magazine. He is founder of the company BrainCheck and the cofounder of the company NeoSensory. He was the scientific advisor for the television drama Perception, and has been profiled on the Colbert Report, NOVA Science Now, the New Yorker, CNN's Next List, and many other venues. He appears regularly on radio and television to discuss literature and science.
David Eagleman: The big picture in modern neuroscience is that you are the sum total of all the pieces and parts of your brain. It’s a vastly complicated network of neurons, almost 100 billion neurons, each of which has 10,000 connections to its neighbors. So we’re talking a thousand trillion neurons. It’s a system of such complexity that it bankrupts our language. But, fundamentally it’s only three pounds and we’ve got it cornered and it’s right there and it’s a physical system.
The computational hypothesis of brain function suggests that the physical wetware isn’t the stuff that matters. It’s what are the algorithms that are running on top of the wetware. In other words: What is the brain actually doing? What’s it implementing software-wise that matters? Hypothetically we should be able to take the physical stuff of the brain and reproduce what it’s doing. In other words, reproduce its software on other substrates. So we could take your brain and reproduce it out of beer cans and tennis balls and it would still run just fine. And if we said hey, "How are you feeling in there?" This beer can/tennis ball machine would say "Oh, I’m feeling fine. It’s a little cold, whatever."
It’s also hypothetically a possibility that we could copy your brain and reproduce it in silica, which means on a computer at zeroes and ones, actually run the simulation of your brain. The challenges of reproducing a brain can’t be underestimated. It would take something like a zettabyte of computational capacity to run a simulation of a human brain. And that is the entire computational capacity of our planet right now.
There’s a lot of debate about whether we’ll get to a simulation of the human brain in 50 years or 500 years, but those would probably be the bounds. It’s going to happen somewhere in there. It opens up the whole universe for us because, you know, these meat puppets that we come to the table with aren’t any good for interstellar travel. But if we could, you know, put you on a flash drive or whatever the equivalent of that is a century from now and launch you into outer space and your consciousness could be there, that could get us to other solar systems and other galaxies. We will really be entering an era of post-humanism or trans-humanism at that point.
Now because it seems like a possibility that we could download and simulate — not in our lifetimes, but soon — that has opened up a question from many people, which is how would we know if we’re already living in a simulation? Maybe we are the products of a civilization that came a billion years before us and we’re already living in The Matrix. And this is a position that philosophers are taking seriously.
In fact, Rene Descartes, the French philosopher, had a version of this when he asked how would I know if I’m just a brain in a vat and I’m being stimulated by scientists to make me think that I’m hearing, and seeing, and feeling and so on. And his conclusion, like others that have followed him, is that you actually can’t know. Really it would be almost impossible to know because all of this feels real to you. And so Descartes’ solution to this was to say you know, I might not ever be able to really know, but there’s somebody who’s asking the question and therefore I exist. There’s some "I" at the center of all this that’s thinking about this. And so that was a solution for him but it doesn’t solve the bigger question of how would we know if we’re already in the simulation and we may well be.
David Eagleman is the host of The Brain on PBS, as well as the author of the book of the same name. In this video, he tackles several fascinating subjects concerning your brain. If the brain is merely the hardware, could we emulate its software somewhere else? Could we simulate your version of consciousness on a man-made computer? Yes, says Eagleman, although it's not going to happen anytime soon. But when it does, and we're able to move beyond our flesh, deep space travel goes from being impossible to possible.
Big ideas.
Once a week.
Subscribe to our weekly newsletter.
The COVID-19 pandemic has introduced a number of new behaviours into daily routines, like physical distancing, mask-wearing and hand sanitizing. Meanwhile, many old behaviours such as attending events, eating out and seeing friends have been put on hold.
VR experiments manipulate how people feel about coffee
A new study looks at how images of coffee's origins affect the perception of its premiumness and quality.
- Images can affect how people perceive the quality of a product.
- In a new study, researchers show using virtual reality that images of farms positively influence the subjects' experience of coffee.
- The results provide insights on the psychology and power of marketing.
Your body’s full of stuff you no longer need. Here's a list.
Evolution doesn't clean up after itself very well.
- An evolutionary biologist got people swapping ideas about our lingering vestigia.
- Basically, this is the stuff that served some evolutionary purpose at some point, but now is kind of, well, extra.
- Here are the six traits that inaugurated the fun.
The plica semilunaris
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwMS9vcmlnaW4ucG5nIiwiZXhwaXJlc19hdCI6MTY3NDg5NTg1NX0.kdBYMvaEzvCiJjcLEPgnjII_KVtT9RMEwJFuXB68D8Q/img.png?width=980" id="59914" width="429" height="350" data-rm-shortcode-id="b11e4be64c5e1f58bf4417d8548bedc7" data-rm-shortcode-name="rebelmouse-image" />The human eye in alarming detail. Image source: Henry Gray / Wikimedia commons
<p>At the inner corner of our eyes, closest to the nasal ridge, is that little pink thing, which is probably what most of us call it, called the caruncula. Next to it is the plica semilunairs, and it's what's left of a third eyelid that used to — ready for this? — blink horizontally. It's supposed to have offered protection for our eyes, and some birds, reptiles, and fish have such a thing.</p>Palmaris longus
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgwNy9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzMzQ1NjUwMn0.dVor41tO_NeLkGY9Tx46SwqhSVaA8HZQmQAp532xLxA/img.jpg?width=980" id="879be" width="1920" height="2560" data-rm-shortcode-id="4089a32ea9fbb1a0281db14332583ccd" data-rm-shortcode-name="rebelmouse-image" />Palmaris longus muscle. Image source: Wikimedia commons
<p> We don't have much need these days, at least most of us, to navigate from tree branch to tree branch. Still, about 86 percent of us still have the wrist muscle that used to help us do it. To see if you have it, place the back of you hand on a flat surface and touch your thumb to your pinkie. If you have a muscle that becomes visible in your wrist, that's the palmaris longus. If you don't, consider yourself more evolved (just joking).</p>Darwin's tubercle
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NjgxMi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY0ODUyNjA1MX0.8RuU-OSRf92wQpaPPJtvFreOVvicEwn39_jnbegiUOk/img.jpg?width=980" id="687a0" width="819" height="1072" data-rm-shortcode-id="ff5edf0a698e0681d11efde1d7872958" data-rm-shortcode-name="rebelmouse-image" />Darwin's tubercle. Image source: Wikimedia commons
<p> Yes, maybe the shell of you ear does feel like a dried apricot. Maybe not. But there's a ridge in that swirly structure that's a muscle which allowed us, at one point, to move our ears in the direction of interesting sounds. These days, we just turn our heads, but there it is.</p>Goosebumps
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYyNzEyNTc2Nn0.aVMa5fsKgiabW5vkr7BOvm2pmNKbLJF_50bwvd4aRo4/img.jpg?width=980" id="d8420" width="1440" height="960" data-rm-shortcode-id="8827e55511c8c3aed8c36d21b6541dbd" data-rm-shortcode-name="rebelmouse-image" />Goosebumps. Photo credit: Tyler Olson via Shutterstock
<p>It's not entirely clear what purpose made goosebumps worth retaining evolutionarily, but there are two circumstances in which they appear: fear and cold. For fear, they may have been a way of making body hair stand up so we'd appear larger to predators, much the way a cat's tail puffs up — numerous creatures exaggerate their size when threatened. In the cold, they may have trapped additional heat for warmth.</p>Tailbone
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMxNi9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTY3MzQwMjc3N30.nBGAfc_O9sgyK_lOUo_MHzP1vK-9kJpohLlj9ax1P8s/img.jpg?width=980" id="9a2f6" width="1440" height="1440" data-rm-shortcode-id="4fe28368d2ed6a91a4c928d4254cc02a" data-rm-shortcode-name="rebelmouse-image" />Coccyx.
Image source: Decade3d-anatomy online via Shutterstock
<p>Way back, we had tails that probably helped us balance upright, and was useful moving through trees. We still have the stump of one when we're embryos, from 4–6 weeks, and then the body mostly dissolves it during Weeks 6–8. What's left is the coccyx.</p>The palmar grasp reflex
<img class="rm-lazyloadable-image rm-shortcode" type="lazy-image" data-runner-src="https://assets.rebelmouse.io/eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpbWFnZSI6Imh0dHBzOi8vYXNzZXRzLnJibC5tcy8xOTA5NzMyMC9vcmlnaW4uanBnIiwiZXhwaXJlc19hdCI6MTYzNjY0MDY5NX0.OSwReKLmNZkbAS12-AvRaxgCM7zyukjQUaG4vmhxTtM/img.jpg?width=980" id="8804c" width="1440" height="960" data-rm-shortcode-id="67542ee1c5a85807b0a7e63399e44575" data-rm-shortcode-name="rebelmouse-image" />Palmar reflex activated! Photo credit: Raul Luna on Flickr
<p> You've probably seen how non-human primate babies grab onto their parents' hands to be carried around. We used to do this, too. So still, if you touch your finger to a baby's palm, or if you touch the sole of their foot, the palmar grasp reflex will cause the hand or foot to try and close around your finger.</p>Other people's suggestions
<p>Amir's followers dove right in, offering both cool and questionable additions to her list. </p>Fangs?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Lower mouth plate behind your teeth. Some have protruding bone under the skin which is a throw back to large fangs. Almost like an upsidedown Sabre Tooth.</p>— neil crud (@neilcrud66) <a href="https://twitter.com/neilcrud66/status/1085606005000601600?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hiccups
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sure: <a href="https://t.co/DjMZB1XidG">https://t.co/DjMZB1XidG</a></p>— Stephen Roughley (@SteBobRoughley) <a href="https://twitter.com/SteBobRoughley/status/1085529239556968448?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Hypnic jerk as you fall asleep
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">What about when you “jump” just as you’re drifting off to sleep, I heard that was a reflex to prevent falling from heights.</p>— Bann face (@thebanns) <a href="https://twitter.com/thebanns/status/1085554171879788545?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> <p> This thing, often called the "alpha jerk" as you drop into alpha sleep, is properly called the hypnic jerk,. It may actually be a carryover from our arboreal days. The <a href="https://www.livescience.com/39225-why-people-twitch-falling-asleep.html" target="_blank" data-vivaldi-spatnav-clickable="1">hypothesis</a> is that you suddenly jerk awake to avoid falling out of your tree.</p>Nails screeching on a blackboard response?
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Everyone hate the sound of fingernails on a blackboard. It's _speculated_ that this is a vestigial wiring in our head, because the sound is similar to the shrill warning call of a chimp. <a href="https://t.co/ReyZBy6XNN">https://t.co/ReyZBy6XNN</a></p>— Pet Rock (@eclogiter) <a href="https://twitter.com/eclogiter/status/1085587006258888706?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Ear hair
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Ok what is Hair in the ears for? I think cuz as we get older it filters out the BS.</p>— Sarah21 (@mimix3) <a href="https://twitter.com/mimix3/status/1085684393593561088?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Nervous laughter
<blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">You may be onto something. Tooth-bearing with the jaw clenched is generally recognized as a signal of submission or non-threatening in primates. Involuntary smiling or laughing in tense situations might have signaled that you weren’t a threat.</p>— Jager Tusk (@JagerTusk) <a href="https://twitter.com/JagerTusk/status/1085316201104912384?ref_src=twsrc%5Etfw">January 15, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Um, yipes.
<blockquote class="twitter-tweet" data-conversation="none" data-lang="en"><p lang="en" dir="ltr">Sometimes it feels like my big toe should be on the side of my foot, was that ever a thing?</p>— B033? K@($ (@whimbrel17) <a href="https://twitter.com/whimbrel17/status/1085559016011563009?ref_src=twsrc%5Etfw">January 16, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Is empathy always good?
Research has shown how important empathy is to relationships, but there are limits to its power.
- Empathy is a useful tool that allows humans (and other species) to connect and form mutually beneficial bonds, but knowing how and when to be empathic is just as important as having empathy.
- Filmmaker Danfung Dennis, Bill Nye, and actor Alan Alda discuss the science of empathy and the ways that the ability can be cultivated and practiced to affect meaningful change, both on a personal and community level.
- But empathy is not a cure all. Paul Bloom explains the psychological differences between empathy and compassion, and how the former can "get in the way" of some of life's crucial relationships.
