What Caused the Big Bang? Consider the Beer Bottle...

For once, beer is going to clarify your understanding. Theoretical physicist Lawrence Krauss lays down the empirical evidence for the mechanics of the Big Bang.

Lawrence Krauss: Our picture of the earliest moments of the universe has been evolving, and I'm happy to say, in some sense has more empirical support than it did before. The discovery of the Higgs field implies that you can get fields that freeze in empty space. And that's a central part of what we think happened in the very early universe. 

And if we can detect gravitational waves from the Big Bang we'd have a window on the universe back to a time when it was a billionth of a billionth of a billionth of a billionth of a second old, answering questions about the origin of the universe as we know it—ideas that I speculated upon in my last book, for example—for which we have new evidence that I've described in my new book.

But because the temperature of the universe and the energies and particles were so extreme at that early time—when the entire visible universe was contained in a region that was smaller than the size of an atom—there's a wonderful symbiosis between large scales and small scales. 

And if we can probe the early universe back to a time that I described we'll actually be probing physics on scales that are much smaller than we can see at the Large Hadron Collider, 12 orders of magnitude smaller in scale (or higher in energy) than we can probe with our highest-energy accelerator now.

To build an accelerator that would directly probe those energies, we would have to have an accelerator that's not just 26 km around, as the Large Hadron Collider is, but whose circumference is the earth-moon distance, and that's not going to be built in our lifetime (and probably ever). So we may have to rely on the universe to give us new information, and that's why we're looking for such signals. 

When the universe was a billionth of a billionth of a billionth of a billionth of a second old our current picture suggests: A field very similar to the Higgs field froze in space, but it was in what is called a metastable state. Sort of like… if you have a beer party and you put beer in the freezer because you forgot to until the few minutes before the party, and then during the party you forget that it's in the freezer, and you take it out later. And it's there—liquid—and you open it up, and suddenly it turns to ice, and the bottle cracks: The beer is in a metastable state. At that temperature it would rather be frozen except it's under a high pressure. The minute you release the pressure it freezes instantaneously, releasing a lot of energy. As our universe cooled we think the same thing happened; basically a field got frozen but in the wrong configuration, and as the universe cooled, suddenly—boom!— like those beer bottles, it changed its state, releasing a huge amount of energy, creating the hot Big Bang.

Now the interesting thing is, while it was in that metastable state and storing energy, general relativity tells us that if you have a field in empty space that's storing energy it produces a gravitational effect that's repulsive, not attractive. So during that brief time gravity is repulsive, and the expansion of our universe started speeding up faster and faster and faster, and the size of our universe (we think) increased by a factor of 10 to the 30th in scale, or at least 10 to the 90th in volume, in a time interval of a billionth of a billionth of a billionth of a second. That means it went from the size of an atom to the size of a basketball in a short time, and that rapid expansion produced characteristics which pervaded the universe today: The fact that our observed universal looks flat, the fluctuations, and the cosmic microwave background radiation all came from quantum fluctuations that happened during inflation. 

Inflation is the only First Principles idea that in principle explains why our universe looks the way it does. And what's wonderful about it is it doesn't require any exotic ideas of quantum gravity or theories we don't have, it's based on ideas that are central to our current understanding of the standard model of particle physics, just extrapolating them somewhat. So it's very well-motivated; even though it is hard to believe that it could have happened, we think it did.


It’s near impossible to comprehend the size of our universe without busting a mental cog or spraining your sense of awe. However, the origins of our universe has exactly the opposite problem: it was once mind-bogglingly small — tinier than a single particle. Physicist Lawrence Krauss explains the principle of inflation, and how within the first billionth of a second of the Big Bang, our universe increased in size by a factor of 10 to the 30th—for comparison, that’s the size of a single atom, to the size of a basketball. How did it do this? It involves a ‘frozen’ Higgs field, some cooling, and then an enormous explosion. Krauss uses an analogy we’ve all been at the mercy of: putting a beer in the freezer and forgetting it for a few too many hours. Lawrence Krauss' most recent book is The Greatest Story Ever Told -- So Far: Why Are We Here?.

Live on Monday: Does the US need one billion people?

What would happen if you tripled the US population? Matthew Yglesias and moderator Charles Duhigg explore the idea on Big Think Live.

Big Think LIVE

Is immigration key to bolstering the American economy? Could having one billion Americans secure the US's position as the global superpower?

Keep reading Show less

The surprising future of vaccine technology

We owe a lot to vaccines and the scientists that develop them. But we've only just touched the surface of what vaccines can do.

  • "Vaccines are the best thing science has ever given us," says Larry Brilliant, founding president and acting chairman of Skoll Global Threats. From smallpox, to Ebola, to polio, scientists have successful fought viruses and saved millions of lives. So what's next?
  • As Covaxx (formerly United Neuroscience) cofounder Lou Reese explains in this video, the issue with vaccines is that they don't work against "non-external threats." This is a problem, especially now when internal threats (things that cause cancers, Alzheimer's, diabetes, and other chronic illnesses) are killing people more than external threats like viruses.
  • The future of vaccine tech, which scientists are already working toward today, is developing safe vaccines to eradicate these destructive internal agents without harming our bodies in the process.

Keep reading Show less

Think everyone died young in ancient societies? Think again

In fact, the maximum human lifespan has barely changed since we arrived.

Photo by Juliet Furst on Unsplash
Surprising Science

You might have seen the cartoon: two cavemen sitting outside their cave knapping stone tools. One says to the other: 'Something's just not right – our air is clean, our water is pure, we all get plenty of exercise, everything we eat is organic and free-range, and yet nobody lives past 30.'

Keep reading Show less

Mystery anomaly weakens Earth's magnetic field, report scientists

A strange weakness in the Earth's protective magnetic field is growing and possibly splitting, shows data.

Surprising Science
  • "The South Atlantic Anomaly" in the Earth's magnetic field is growing and possibly splitting, shows data.
  • The information was gathered by the ESA's Swarm Constellation mission satellites.
  • The changes may indicate the coming reversal of the North and South Poles.
Keep reading Show less

Why social media has changed the world — and how to fix it

MIT Professor Sinan Aral's new book, "The Hype Machine," explores the perils and promise of social media in a time of discord.

Peter Macdiarmid/Getty Images for Somerset House
Technology & Innovation

Are you on social media a lot? When is the last time you checked Twitter, Facebook, or Instagram? Last night? Before breakfast? Five minutes ago?

Keep reading Show less