What Factor Influences Women's Health and Success the Most?

Every day, somewhere between 60 and 70 million girls are not in school. More than half a billion females worldwide are illiterate—about twice the number of illiterate males.

Of all the factors that influence a woman’s health and success, none is more important than education. And the good news is that more girls and women across the globe have access to education than ever before. But the progress has been incomplete and uneven, with parts of Southeast Asia and Africa lagging far behind the rest of the world. More work needs to be done. 


Every day, somewhere between 60 and 70 million girls are not in school. More than half a billion females worldwide are illiterate—about twice the number of illiterate males. It would be difficult to overstate the challenges these women face: a lifetime of lower income, poorer health outcomes – including higher risk of HIV infection and other diseases -- and higher rates of mental illness. Uneducated girls also are more likely to become child brides or trafficking victims, bear children while they are still children themselves, and see those children grow up in poverty.

Statistics show the gender gap in education is narrowing worldwide, reflecting concerted efforts to educate women and girls.  However, as of 2015, fewer than half of all countries had achieved gender parity in enrollment for both primary and secondary education.

Similarly, we’ve seen significant improvement in women’s health in recent years. For example, maternal deaths – deaths caused by complications of pregnancy or childbirth – declined from 532,000 in 1990 to 303,000 in 2015. But the developing world still accounts for 99 percent of the total, and progress has slowed in recent years. Two-thirds of those deaths (201,000) occur in sub-Saharan Africa, and 22 percent (66,000) in Southern Asia. It is not unsurprising that geographies with high maternal deaths rates also have low rates of educating girls.

Maintaining and expanding education for women and girls will play a critical role in driving continued improvement in female health outcomes. In many poor countries, HIV/AIDS is the leading killer of women of reproductive age. Better educated women and girls are more likely to use contraception, which helps them avoid diseases, to delay childbirth, and to wait longer between pregnancies. Education also helps improve prenatal and postnatal care, reducing the risk of infant mortality and complications from pregnancy, which in turn leads to healthier, more stable families.

Worldwide, educated women play an important role in the birth process itself. Particularly in poor and remote areas, female midwives may be the only health care provider a pregnant woman sees, and this basic level of care can drastically improve the odds of a safe delivery and a healthy baby. Yet these overworked midwives and other health providers typically face dire conditions and desperately need more support. Often lacking infrastructure and technical skills and due to an extreme sense of responsibility, many can suffer a range of feelings from guilt, anxiety, fear, complacency, powerlessness or inadequacy. To not only catalyze but to also sustain change, both in behavior and practice, we must recognize and address these understandable human emotions as they can become barriers to doing one's best to care for mothers and their newborns.

Many governments now recognize the importance of providing trained support for pregnant women in poor communities. For example, India boosted the number of pregnant women who delivered their babies in a healthcare facility from 39 percent in 2005 to nearly 75 percent today. The country’s National Rural Health Mission provided cash payments to entice expectant mothers who would otherwise deliver at home, where they would not have had the benefit of a skilled birth attendant. However, the success of this program also underscores the critical need for more trained health care workers. According to a report published by the World Health Organization (WHO), poorer Indian states like Bihar and Uttar Pradesh face a shortage of more than 500,000 health care workers, compounding feelings of hopelessness and isolation by frontline care providers entrenched in the overwhelmed system. Until quality improvement efforts are coordinated across the entire health care system, addressing the demands on resources, and the intrinsic factors of health care provider motivation, many laboring women will continue to experience poor outcomes.

Many factors contribute to maternal health outcomes. Ongoing wars, natural disasters and economic downturns make further gains difficult, as do inconsistent international aid commitments. But it’s clear that educating women and girls can have a profound and lasting impact. Equipping girls with the knowledge to improve their own health and economic prospects helps multiply the impact of investments in public health programs. We should endeavor to provide every woman and girl with that kind of future.

***

Dilys Walker, MD, is Obstetrician Gynecologist, Professor, Department of Obstetrics, Gynecology & Reproductive Sciences, Bixby Center for Global Reproductive at the University of California San Francisco and founding member of PRONTO International.

Related Articles

Major study: Drug overdoses over a 38-year period reveal hidden trends

It's just the current cycle that involves opiates, but methamphetamine, cocaine, and others have caused the trajectory of overdoses to head the same direction

From the study: http://science.sciencemag.org/content/361/6408/eaau1184
Surprising Science
  • It appears that overdoses are increasing exponentially, no matter the drug itself
  • If the study bears out, it means that even reducing opiates will not slow the trajectory.
  • The causes of these trends remain obscure, but near the end of the write-up about the study, a hint might be apparent
Keep reading Show less

Why "nuclear pasta" is the strongest material in the universe

Through computationally intensive computer simulations, researchers have discovered that "nuclear pasta," found in the crusts of neutron stars, is the strongest material in the universe.

Accretion disk surrounding a neutron star. Credit: NASA
Surprising Science
  • The strongest material in the universe may be the whimsically named "nuclear pasta."
  • You can find this substance in the crust of neutron stars.
  • This amazing material is super-dense, and is 10 billion times harder to break than steel.

Superman is known as the "Man of Steel" for his strength and indestructibility. But the discovery of a new material that's 10 billion times harder to break than steel begs the question—is it time for a new superhero known as "Nuclear Pasta"? That's the name of the substance that a team of researchers thinks is the strongest known material in the universe.

Unlike humans, when stars reach a certain age, they do not just wither and die, but they explode, collapsing into a mass of neurons. The resulting space entity, known as a neutron star, is incredibly dense. So much so that previous research showed that the surface of a such a star would feature amazingly strong material. The new research, which involved the largest-ever computer simulations of a neutron star's crust, proposes that "nuclear pasta," the material just under the surface, is actually stronger.

The competition between forces from protons and neutrons inside a neutron star create super-dense shapes that look like long cylinders or flat planes, referred to as "spaghetti" and "lasagna," respectively. That's also where we get the overall name of nuclear pasta.

Caplan & Horowitz/arXiv

Diagrams illustrating the different types of so-called nuclear pasta.

The researchers' computer simulations needed 2 million hours of processor time before completion, which would be, according to a press release from McGill University, "the equivalent of 250 years on a laptop with a single good GPU." Fortunately, the researchers had access to a supercomputer, although it still took a couple of years. The scientists' simulations consisted of stretching and deforming the nuclear pasta to see how it behaved and what it would take to break it.

While they were able to discover just how strong nuclear pasta seems to be, no one is holding their breath that we'll be sending out missions to mine this substance any time soon. Instead, the discovery has other significant applications.

One of the study's co-authors, Matthew Caplan, a postdoctoral research fellow at McGill University, said the neutron stars would be "a hundred trillion times denser than anything on earth." Understanding what's inside them would be valuable for astronomers because now only the outer layer of such starts can be observed.

"A lot of interesting physics is going on here under extreme conditions and so understanding the physical properties of a neutron star is a way for scientists to test their theories and models," Caplan added. "With this result, many problems need to be revisited. How large a mountain can you build on a neutron star before the crust breaks and it collapses? What will it look like? And most importantly, how can astronomers observe it?"

Another possibility worth studying is that, due to its instability, nuclear pasta might generate gravitational waves. It may be possible to observe them at some point here on Earth by utilizing very sensitive equipment.

The team of scientists also included A. S. Schneider from California Institute of Technology and C. J. Horowitz from Indiana University.

Check out the study "The elasticity of nuclear pasta," published in Physical Review Letters.


How a huge, underwater wall could save melting Antarctic glaciers

Scientists think constructing a miles-long wall along an ice shelf in Antarctica could help protect the world's largest glacier from melting.

Image: NASA
Surprising Science
  • Rising ocean levels are a serious threat to coastal regions around the globe.
  • Scientists have proposed large-scale geoengineering projects that would prevent ice shelves from melting.
  • The most successful solution proposed would be a miles-long, incredibly tall underwater wall at the edge of the ice shelves.

The world's oceans will rise significantly over the next century if the massive ice shelves connected to Antarctica begin to fail as a result of global warming.

To prevent or hold off such a catastrophe, a team of scientists recently proposed a radical plan: build underwater walls that would either support the ice or protect it from warm waters.

In a paper published in The Cryosphere, Michael Wolovick and John Moore from Princeton and the Beijing Normal University, respectively, outlined several "targeted geoengineering" solutions that could help prevent the melting of western Antarctica's Florida-sized Thwaites Glacier, whose melting waters are projected to be the largest source of sea-level rise in the foreseeable future.

An "unthinkable" engineering project

"If [glacial geoengineering] works there then we would expect it to work on less challenging glaciers as well," the authors wrote in the study.

One approach involves using sand or gravel to build artificial mounds on the seafloor that would help support the glacier and hopefully allow it to regrow. In another strategy, an underwater wall would be built to prevent warm waters from eating away at the glacier's base.

The most effective design, according to the team's computer simulations, would be a miles-long and very tall wall, or "artificial sill," that serves as a "continuous barrier" across the length of the glacier, providing it both physical support and protection from warm waters. Although the study authors suggested this option is currently beyond any engineering feat humans have attempted, it was shown to be the most effective solution in preventing the glacier from collapsing.

Source: Wolovick et al.

An example of the proposed geoengineering project. By blocking off the warm water that would otherwise eat away at the glacier's base, further sea level rise might be preventable.

But other, more feasible options could also be effective. For example, building a smaller wall that blocks about 50% of warm water from reaching the glacier would have about a 70% chance of preventing a runaway collapse, while constructing a series of isolated, 1,000-foot-tall columns on the seafloor as supports had about a 30% chance of success.

Still, the authors note that the frigid waters of the Antarctica present unprecedently challenging conditions for such an ambitious geoengineering project. They were also sure to caution that their encouraging results shouldn't be seen as reasons to neglect other measures that would cut global emissions or otherwise combat climate change.

"There are dishonest elements of society that will try to use our research to argue against the necessity of emissions' reductions. Our research does not in any way support that interpretation," they wrote.

"The more carbon we emit, the less likely it becomes that the ice sheets will survive in the long term at anything close to their present volume."

A 2015 report from the National Academies of Sciences, Engineering, and Medicine illustrates the potentially devastating effects of ice-shelf melting in western Antarctica.

"As the oceans and atmosphere warm, melting of ice shelves in key areas around the edges of the Antarctic ice sheet could trigger a runaway collapse process known as Marine Ice Sheet Instability. If this were to occur, the collapse of the West Antarctic Ice Sheet (WAIS) could potentially contribute 2 to 4 meters (6.5 to 13 feet) of global sea level rise within just a few centuries."